IBM Informix OnLine
Database Server

Administrator’s Guide

Version 5.x
December 2001
Part No. 000-8697

Note:
Before using this information and the product it supports, read the information in the
appendix entitled “Notices.”

This document contains proprietary information of IBM. It is provided under a license agreement and is
protected by copyright law. The information contained in this publication does not include any product
warranties, and any statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2001. All rights reserved.

US Government User Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

ii IBM Informix OnLine Database Server Administrator's Guide

Table of Contents

Introduction

In This Introduction

About This Manual .
Organization of This Manual

Demonstration Database

IBM Informix OnLine .
Product Overview.

IBM Informix OnLine and Other IBM Informlx Products

Documentation Conventions
Typographical Conventions

Icon Conventions . .
Command-Line Conventions .
Sample Code Conventions .

Additional Documentation
Printed Manuals

Error Message Files .

Documentation Notes, Release Notes Machme Notes
Related Reading . .
Compliance with Industry Standards
IBM Welcomes Your Comments

© © 00 N NN O bW W

[N
N

= =
NGNS

N B e e
O © © ® Ul

Chapter 1 Installation and Initial Configuration
In This Chapter .

Define Your Starting Point .
Upgrade an Earlier Version of OnLlne

Overview of OnLine Installation Steps

Overview of OnLine Initial Configuration Tasks
OnLine Configuration Files .

Contents of thbconfig.std

Set Up Your Initial Configuration
Root Dbspace Configuration Gwdelmes

Mirroring Configuration Guidelines .
Physical Log Configuration Guidelines .
Logical Log Configuration Guidelines
Message File Guidelines

Archive Tape Device Guidelines

Logical Log Tape Device Guidelines .
Identification Parameter Guidelines
Shared-Memory Parameter Guidelines .

Machine- and Product-Specific Parameter Gwdelmes .

OnLine Disk Space Allocation
Configuration Checklist .

Enter Your Configuration and Inltlallze OnL|ne
Setting Shared Memory Parameters

Initialize OnLine .

Set Your Environment Varlables .
Modify UNIX Startup and Shutdown Scrlpts .
Create Blobspaces and Dbspaces

Errors During Initialization .
OnLine Error Message Format .

UNIX Error Message Format.

iv IBM Informix OnLine Database Server Administrator's Guide

1-5
1-6
1-7

1-10

1-10

111

1-13

1-20

1-21

1-24

1-25

1-26

1-28

1-28

1-29

1-31

1-32

1-39

1-40

1-50

1-51

1-53

1-54

1-54

1-56

1-59

1-59

1-60

1-60

Chapter 2

System Architecture

In This Chapter

Initialization
Initialization Commands

What Happens During Shared- Memory In|t|aI|zat|on
What Happens During Disk-Space Initialization

UNIX Kernel and Semaphore-Allocation Parameters .

OnLine User Processes .
How User Processes Attach to Shared Memory

User Processes and Critical Sections.
OnLine User Process Status and States .
OnLine Database Server Process .
Orphaned Database Server Processes

OnLine Daemon Processes
tbinit Daemon

tbundo Daemon
tbpgcl Daemon .

Shared Memory and Process Communication .
Shared Memory and Buffer Locks

Managing Shared-Memory Resources .
Shared-Memory Header.

Shared-Memory Internal Tables .
Shared-Memory Buffer Pool

OnLine LRU Queues .

LRU Queues and Buffer Pool Management .
How a User Process Acquires a Buffer .
Physical Log Buffer

Logical Log Buffer .

OnLine Checkpoints .

What Happens During a Checkpomt

When the Daemons Flush the Buffer Pool.
How OnLine Synchronizes Buffer Flushing .
Write Types Describe Flushing Activity
Writing Data to a Blobspace

Disk Data Structures
OnLine Disk Space Terms and Deflnltlons

Structure of the Root Dbspace .

Structure of a Regular Dbspace .
Structure of an Additional Dbspace Chunk .
Structure of a Blobspace .

2-7
2-7
2-8

2-10

2-14

2-18

2-22

2-24

2-28

2-29

2-30

2-31

2-33

2-33

2-34

2-34

2-36

2-38

2-39

2-47

2-48

2-55

2-57

2-58

2-60

2-63

2-66

2-70

2-72

2-73

2-74

2-75

2-78

2-81

2-81

2-87

2-89

2-90

2-91

Table of Contents v

Structure of a Blobspace or Dbspace Mirror Chunk 2-92

OnLine LimitsforChunks 293
ReservedPages 29
Chunk Free-ListPage 2103
tblspace Tblspace. 2104
Database Thlspace . . . Coe 2107
Create a Database: What Happens on DISk 2-108
OnLine Limits for Databases. 2-110
Create a Table: What HappensonDisk 2-110
Create a Temporary Table: What Happenson Disk 2-113
Structureofan Extent 214
Next Extent Allocation. 2117
Structure of a DbspacePage 2-120
Data Row Formatand Rowid 2123
Data Pages and Data Row Storage. 2125
Structure of an IndexPage 2-133
Structure of a Dbspace Bit-MapPage 2-143
Blob Storage and the Blob Descriptor. 2145
Structure of a Dbspace BlobPage 2-146
Blobspace Page Types 2-148
Structure of a Blobspace Blobpage 2-149
PhysicalLog . 2152
Logical Log Files . . . e .o ... 2154
Fast Recovery and Data Restore 2 Y
File Rotation 2155
FileContents 2156
Number and Size. 2156
Blobspace Logging 2158
Long Transactions 2159

vi IBM Informix OnLine Database Server Administrator's Guide

Chapter 3 Operating OnLine

InThisChapter 3-5
Changing Modes Ce e 3-6
Types of OnLine Modes e e 3-6
From Offline to Quiescent 3-8
From Offline to Online 3-8
From Quiescent to Online . . . G e 3-9
Gracefully from Online to Qwescent Co e 3-10
Immediately from Online to Quiescent. 3-11
From Any Mode Immediately to Offline 3-12
Logical Log Administration . . . Ce e e 3-13
Examine Your Logical Log Conflguratlon e 3-14
Change Pathname of Logical Log Tape Device 3-18
Change Block Size of Logical Log Tape Device 3-21
Change Tape Size of Logical Log Tape Device 3-22
Change Maximum Number of Logical Log Files 3-23
Change Size of Logical Log Files. 3-24
Logical Log File Status 3-26
Logical Log File ID Numbers 3-27
Add a Logical LogFile 3-28
Drop a Logical Log File Lo 3-30
Move a Logical Log File to Another Dbspace Lo 3-31
Change the Logging Status of a Database 3-33
Back Up a Logical LogFile 3-36
Start Continuous Logical Log Backup 3-37
End Continuous Logical Log Backup 3-38
Switch to the Next Logical Log File 3-39
Free a Logical Log File . . . S 3-39
If the Logical Log Backup Cannot Complete Lo 3-42
Archive Administration 3-43
Archive Types . . . e 3-43
How Long Will an Archlve Take7 e 3-46
Plan the Archive Schedule 3-47
Examine Your Archive Configuration 3-50
Change Pathname of Archive Tape Device 3-52
Change Block Size of Archive Tape Device 3-55
Change Tape Size of Archive Tape Device. 3-56
Create an Archive, Any Type 3-57

Table of Contents vii

viii

If the Logical Log Files Fill During an Archive.

If an Archive Terminates Prematurely

Monitor OnLine Activity

Monitor Archive History .
Monitor Blobs in a Blobspace
Monitor Blobs in a Dbspace .
Monitor Buffers

Monitor Buffer-Pool Act|V|ty
Monitor Checkpoints

Monitor Chunks .

Monitor Configuration Informatlon
Monitor Databases .

Monitor Dbspaces

Monitor Disk Pages .

Monitor Extents .

Monitor Index Information
Monitor Logging Activity .
Monitor the Message Log .
Monitor OnLine Profile .
Monitor Shared Memory and Latches
Monitor Tblspaces .
Monitor Users and Transactions

Modify OnLine Configuration

Create a Blobspace .

Drop a Blobspace.

Change the Number of Buffers in the Pool
Change the Size of Either Log Buffer .

Add a Chunk . .
Change the Maximum Number of Chunks
Create a Dbspace .

Drop a Dbspace .

Enforce/Turn Off Re5|dency for Thls Sessmn .

Enforce/Turn Off Residency . .
Change the Status of a Mirrored Chunk
Enable Mirroring .

Start/End Mirroring in a Blobspace or Dbspace .

Change Physical Log Location or Size
Change the Checkpoint Interval

Change the Destination of Console Messages .

IBM Informix OnLine Database Server Administrator's Guide

3-59
3-60
3-61
3-61
3-63
3-65
3-66
3-68
3-69
3-70
3-73
3-74
3-75
3-77
3-78
3-79
3-80
3-82
3-83
3-84
3-85
3-86
3-87
3-88
3-91
3-92
3-93
3-94
3-96
3-97
3-99

3-100

3-100

3-101

3-104

3-105

3-107

3-109

3-110

Chapter 4

Change the Maximum Number of Dbspaces .
Change the Maximum Number of Locks .
Change the Maximum Number of Tblspaces.
Change the Maximum Number of Users .

Change the Number of Page Cleaners .
Things to Avoid

Data Consistency, Recovery, and Migration

In This Chapter

Consistency Checking . .
Using the tbcheck Commands

Using the OnLine Message Log
Setting Consistency-Checking Variables
Recovering from Corruption
Mirroring
Beginning.
Processing
Recovery .
Ending.

OnLine Logging Overview
Dbspace Logging .

Blobspace Logging.

What Happens During Logical Log Backup
Ready LTAPEDEV . . .o

Locate the Next Logical Log
Copy Blobpages .
Place Log Header on Tape .
Write Log Records to Tape .
Write Trailer Page .

What Happens During an Archlve
Read Archive History Information .

Mount a Tape on TAPEDEV

Verify the Archive Level . .
Check Free Space in the Logical Log
Force a Checkpoint

Synchronize tbtape and tbinit Actlvmes
Write Tape Header Page .

Archive Reserved Pages .

Determine Archive Criteria. .
Archive Disk Pages That Meet Crlterla

3-111
3-112
3-113
3-114
3-115
3-116

4-5
4-6
4-6
4-8
4-9

4-12

4-14

4-15

4-16

4-17

4-17

4-18

4-19

4-22

4-26

4-27

4-27

4-27

4-28

4-29

4-30

4-30

4-31

4-31

4-32

4-32

4-32

4-33

4-35

4-36

4-37

4-38

Table of Contents ix

Monitor and Archive Physical LogPages 4-38

Write a TrailerPage 438
Update the Reserved Pages 438
Fast Recovery . . e e o439
How Does OnLlne Inltlate Fast Recovery’) e ..o .. 439
Fast Recovery and Logging 440
Step 1: Checkpoint Condition . . . B R
Step 2: Find Checkpoint Record in Loglcal Log P R X
Step 3: Roll Forward Log Records 443
Step 4: Roll Back Incomplete Transactions 4-44
Data Restore: When Should YouDo It? 445
Steps That Occur During a Data Restore. 445
Gather All Tapes Needed for Restore 4-47
Verify OnLine Configuration. . . . e v
Initiate Data Restore from Offline Mode e e [¢}
Mount Level-0 Archive Tape. 449
Verify Current Configuration 450
Prompt for Logical Log Backup. 450
Write Each Archive PagetoDisk 451
Initialize Shared Memory 451
Roll Forward LogicalLogs 451
OnLine IsQuiescent. 452
Database and Table Migration . . . ey Y4
Description of Migration Methods e 454
Which Migration Method Is Best for You? 457
Using UNLOAD with LOADordbload 460
Using dbexport and dbimport 462
Using tbunload and tbload 463
Migrating Data from OnLinetoSE. 4-65
Migrating Data from SE to OnLine. 466

X IBM Informix OnLine Database Server Administrator's Guide

Chapter 5

How to Improve Performance
In This Chapter

Disk Layout

Optimize Blobspace Blobpage Slze

tbcheck -pB and thcheck -pe Utility Commands.

Blobpage Average Fullness .
Apply Effective Criteria . . .
Eliminate User-Created Resource Bottlenecks .

When Is Tuning Needed? .
% Cached Fields

ovtbls, ovlock, ovuser, and ovbuff F|elds .
Bufsize Pages/I10 Fields .

Shared-Memory Buffers
When Is Tuning Necessary?

How Is Tuning Done?

Shared-Memory Resources
When Is Tuning Necessary?

How Is Tuning Done?

Log Buffer Size
Logging Status .

How Is Tuning Done?

Page-Cleaner Parameters .
Efficient Page Cleaning .

How Is Tuning Done?

Checkpoint Frequency .
Performance Tradeoffs

How Is Tuning Done?

Psort Parallel-Process Sorting Package
How Psort Works .

Tuning Psort . S
Psort and Shared Memory .
SPINCNT Configuration Parameter

5-10
5-10
5-11
5-11
5-13
5-13
5-13
5-14
5-14
5-15
5-15
5-15
5-16
5-17
5-17
5-19
5-20
5-20
5-21
5-22
5-22
5-23
5-24
5-24

Table of Contents ~ Xi

Chapter 6 DB-Monitor Screens

InThisChapter 6-3
MainMenu. L 6-4
StatusMenu L L 6-5
ParametersMenu L. 6-6
DbspacesMenu L. 6-7
ModeMenu L. 6-8
Force-Ckpt Option 6-9
ArchiveMenu. 610
Logical-LogsMenu 61

Chapter 7 Utilities

In This Chapter Coe e 7-5
dbexport: Unload a Database and Schema Flle Coe e 7-5
Syntax . . . Ce e e s 7-6
Destination Optlons Ce e 7-7
Contents of the SchemaFile 7-9
dbimport: Create a Database 7-10
Syntax . . . e o]
Input File Locatlon Optlons Y £ 4
Create Options . . . e, T4
dbload: Load Data from a Command Flle 115
Syntax . . . B A}
Command-File Syntax Check T-18
Starting Line Number T7-18
Batch Size 719
Bad-Row Limits e 720
How to Create a Command F|Ie Y A
dbschema: Output SQL Statements 7-32
Syntax . . . Y £V
Include Synonyms Y X K
Include Privileges Y 7]
Specify a Table, View, or Procedure 13
tbcheck: Check, Repair, or Dlsplay T-36
Syntax . . . S T-38
Option Descrlptlons. T 1Y)
tbinit: Initialize OnLine T45
Syntax . T-46

xii IBM Informix OnLine Database Server Administrator's Guide

tbload: Create a Database or Table .
Syntax .

Specify Tape Parameters
Create Options .

tblog: Display Logical Log Contents .
Syntax . .o

Log-Record Read Fllters
Log-Record Display Filters .
Interpreting tblog Output

tbmode: Mode and Shared- Memory Changes
Syntax . .o S

Change OnLine Mode

Force a Checkpoint

Change Shared-Memory Re5|dency
Switch the Logical Log File .

Kill an OnLine Server Process .

Kill an OnLine Transaction .

tbparams: Modify Log Configuration Parameters

Syntax .

Add a Logical Log F|Ie

Drop a Logical Log File .
Change Physical Log Parameters.

tbspaces: Modify Blobspaces or Dbspaces
Syntax . .o

Create a Blobspace or Dbspace
Drop a Blobspace or Dbspace .
Add a Chunk

Change Chunk Status.

tbstat: Monitor OnLine Operation .
Syntax . .o

Option Descriptions .

tbtape: Logging, Archives, and Restore .
Syntax .

Request a Loglcal Log Backup
Start Continuous Backups .
Create an Archive .

Perform a Data Restore .
Change Database Logging Status

7-47
7-48
7-49
7-50
7-51
7-51
7-52
7-54
7-55
7-64
7-65
7-66
7-67
7-68
7-68
7-69
7-69
7-70
7-70
7-70
7-71
7-72
7-73
7-73
7-74
7-75
7-76
7-77
7-78
7-80
7-82

7-102

7-103

7-104

7-104

7-105

7-105

7-106

Table of Contents ~ xiii

tbunload: Transfer Binary Data in Page Units 7-107
Syntax e T-108

Specify Tape Parameters 7-109

Chapter 8 OnLine Message Log

InThisChapter 8-3
OnLineMessagelLog 8-3
Alphabetized Messages 8-5
Chapter 9 Product Environment
InThisChapter 9-3
The OnLine Environment 9-3
OnLineFeatures 9-3
Features Beyond the Scope of OnLine. 9-6
What Is Multiple Residency? 9-7
How Multiple Residency Works 910
How to Set Up Multiple Residency 91
OnLine Administration with IBM Informix STAR 9-15
Sharing Data by Using IBM Informix STAR. 9-15
IBM Informix STAR and Two-Phase Commit Protocol 9-19
Two-Phase Commit and Automatic Recovery 9-23
Independent Action and Manual Recovery. 9-29
Heuristic Decisions: WhatandwWhy 930
HeuristicRollback 936
Heuristic End-Transaction 940
Two-Phase Commit Protocol Errors 9443
Two-Phase Commit and Logical Log Records 9-44
Determining Database Consistency 951
IBM Informix STAR Configuration Parameters 9-57
Track a Transaction with tbstat Qutput 9-58

Appendix A Notices

Index

xiv IBM Informix OnLine Database Server Administrator's Guide

Introduction

In This Introduction

About This Manual. .
Organization of This Manual

Demonstration Database

IBM Informix OnLine .
Product Overview.

IBM Informix OnLine and Other IBM Informlx Products

Documentation Conventions
Typographical Conventions

Icon Conventions .
Command-Line Conventions .

Elements That Can Appear on the Path .
How to Read a Command-Line Diagram
Sample Code Conventions .

Additional Documentation .
Printed Manuals

Error Message Files

Using the ASCII Error Message Flle
Using the PostScript Error Message Files
Documentation Notes, Release Notes, Machine Notes

Related Reading .
Compliance with Industry Standards

IBM Welcomes Your Comments

© 00 ~N N~ o bW w

2 IBM Informix OnLine Database Server Administrator's Guide

In This Introduction

This introduction provides an overview of the information in this manual
and describes the conventions it uses.

About This Manual

The 1BM Informix OnLine Administrator’s Guide describes the powerful
Informix online transaction processing (OLTP) database server.

You do not need database management experience or familiarity with
relational database concepts to use this manual. However, a knowledge of
SQL (Structured Query Language) would be useful. For detailed information
about IBM Informix SQL, see the IBM Informix Guide to SQL: Tutorial and the
IBM Informix Guide to SQL: Reference.

This manual serves as both an administrator and operator guide and a
reference manual. Chapter 1, “Installation and Initial Configuration,”
supports the instructions provided in the UNIX Products Installation Guide.
Chapter 2, “System Architecture,” provides an optional, technical discussion
of the IBM Informix OnLine system architecture. Subsequent chapters explain
how to take advantage of all the features and functionality of the

IBM Informix OnLine database server.

Introduction 3

Organization of This Manual

4

Organization of This Manual

This manual includes the following chapters:

Chapter 1, “Installation and Initial Configuration,” provides a step-
by-step explanation of OnLine database server installation and
setup. The chapter includes a worksheet to assist you in planning
your system and in documenting your configuration.

Chapter 2, “System Architecture,” provides optional reference
material about OnLine operation that is intended to deepen your
understanding of OnLine 5.x.

Chapter 3, “Operating OnLine,” explains the routine tasks of OnLine
administration; startup and shutdown, logical log management,
archive management, monitoring OnLine activity, and managing
disk space.

Chapter 4, “Data Consistency, Recovery, and Migration,” provides
background information and instructions for using the high-avail-
ability features of OnLine.

Chapter 5, “How to Improve Performance,” describes strategies you
can use to obtain maximum performance within your processing
environment.

Chapter 6, “DB-Monitor Screens,” explains how to use the
DB-Monitor menu facility provided with OnLine.

Chapter 7, “Utilities,” describes the function and syntax of each of
the 14 OnLine utilities.

Chapter 8, “OnLine Message Log,” provides reference material that
documents the internal messages that OnLine generates during
processing.

Chapter 9, “Product Environment,” describes three possible OnLine
environments. First, this chapter describes the OnLine features that
are available to you within a single-system environment. Second,
this chapter describes how to configure and administer OnLine
database servers if you are running more than one OnLine database
server on a single host machine. Finally, this chapter describes
OnLine administration issues that arise when you use the

IBM Informix STAR product to run OnLine in a client/server
environment.

IBM Informix OnLine Database Server Administrator's Guide

Demonstration Database

A Notices appendix contains information about IBM products, services, and
features. An index directs you to areas of particular interest.

Demonstration Database

Your I1BM Informix OnLine software includes a demonstration database
called stores5 that contains information about a fictitious wholesale sporting-
goods distributor. The sample command files that make up a demonstration
application are included as well.

Most of the examples in this manual are based on the stores5 demonstration
database. The stores5 database is described in detail and its contents are
listed in IBM Informix Guide to SQL: Reference. For further information about
using DB-Access to manipulate the data in the demonstration database, refer
to the DB-Access User Manual.

The script you use to install the demonstration database is called
dbaccessdemo5 and is located in the $INFORMIXDIR/bin directory. The
database name that you supply is the name given to the demonstration
database. If you do not supply a database name, the name defaults to storesb.
Follow these rules for naming your database:

= Names for databases can be up to 10 characters long.

= The first character of a name must be a letter.

= You can use letters, characters, and underscores () for the rest of the
name.

= DB-Access makes no distinction between uppercase and lowercase
letters.

= The database name should be unique.

When you run dbaccessdemob5, you are, as the creator of the database, the
owner and Database Administrator (DBA) of that database.

After you install OnLine, the files that make up the demonstration database
are protected so that you cannot make any changes to the original database.

Introduction 5

Demonstration Database

6

You can run the dbaccessdemaob script again whenever you want a fresh
demonstration database to work with. The script prompts you when the
creation of the database is complete and asks if you would like to copy the
sample command files to the current directory. Answer “N” to the prompt if
you have made changes to the sample files and do not want them replaced
with the original versions. Answer “Y” to the prompt if you want to copy
over the sample command files.

To create and populate the demonstration database in the IBM Informix OnLine
environment

1. Setthe INFORMIXDIR environment so that it contains the name of the
directory in which your IBM Informix products are installed.

Set SQLEXEC to SINFORMIXDIR/lib/sqlturbo. (For a full description
of environment variables, see IBM Informix Guide to SQL: Reference.)

2. Create a new directory for the SQL command files.
Create the directory by entering:

nmkdi r di rnanme
3. Make the new directory the current directory by entering:
cd di rnanme
4. Create the demonstration database and copy over the sample
command files by entering:
dbaccessdenn5 dbnane
The data for the database is put into the root dbspace.

To give someone else the SQL privileges to access the data, use the GRANT
and REVOKE statements. The GRANT and REVOKE statements are described
in IBM Informix Guide to SQL: Reference.

To use the command files that have been copied to your directory, you must
have UNIX read and execute permissions for each directory in the pathname
of the directory from which you ran the dbaccessdemo5 script. To give
someone else the permissions to access the command files in your directory,
use the UNIX chmod command.

IBM Informix OnLine Database Server Administrator's Guide

IBM Informix OnLine

IBM Informix OnLine

Product Overview

The 1BM Informix OnLine database server combines high-availability, online
transaction-processing (OLTP) performance with multimedia capabilities. By
managing its own shared-memory resources and disk 1/0, OnLine delivers
process concurrency while maintaining transaction isolation. Table data can
span multiple disks, freeing administrators from constraints imposed by data
storage limitations. The IBM Informix STAR product brings OnLine perfor-
mance to users throughout a client/server environment. The IBM Informix
TP/XA product allows you to use the OnLine database server as a Resource
Manager within an X/Open environment.

IBM Informix OnLine and Other IBM Informix Products

IBM provides a variety of application development tools, CASE tools,
database servers, utilities, and client/server products. DB-Access is a utility
that allows you to access, modify, and retrieve information from OnLine
relational databases. IBM Informix OnLine supports all application devel-
opment tools currently available, including products like IBM Informix SQL,
IBM Informix 4GL and Interactive Debugger, and the Informix embedded
language products, such as IBM Informix ESQL/C. IBM Informix OnLine also
works with third-party application development tools through the

IBM Informix ODBC Driver and the IBM Informix JDBC Driver.

For running applications on a network, IBM Informix STAR provides
distributed database access to multiple IBM Informix OnLine database
servers.

Introduction 7

Documentation Conventions

Documentation Conventions

This section describes the conventions that this manual uses. These
conventions make it easier to gather information from this and other volumes
in the documentation set.

The following conventions are discussed:

= Typographical conventions

= lcon conventions

= Command-line conventions
= Example code conventions

Typographical Conventions

This manual uses the following conventions to introduce new terms,
illustrate screen displays, describe command syntax, and so forth.

Convention Meaning
KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.
italics Within text, new terms and emphasized words appear in italics.
italics Within syntax and code examples, variable values that you are
italics to specify appear in italics.
boldface Names of program entities (such as classes, events, and tables),
boldface environment variables, file and pathnames, and interface
elements (such as icons, menu items, and buttons) appear in
boldface.
nmonospace Information that the product displays and information that you
monospace enter appear in a monospace typeface.
Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the

text or to “press” other keys, no RETURN is required.

8 IBM Informix OnLine Database Server Administrator's Guide

Icon Conventions

Icon Conventions

Comment icons identify three types of information, as the following table
describes. This information always appears in italics.

Icon Label Description
Warning: Identifies paragraphs that contain vital instructions,
cautions, or critical information
Important: Identifies paragraphs that contain significant
|:> information about the feature or operation that is
being described

Tip: Identifies paragraphs that offer additional details or
shortcuts for the functionality that is being described

Command-Line Conventions

OnLine supports a variety of command-line options. These are commands
that you enter at the operating system prompt to perform certain functions
as part of OnLine administration.

This section defines and illustrates the format of the commands. These
commands have their own conventions, which may include alternative
forms of a command, required and optional parts of the command, and so
forth.

Each diagram displays the sequences of required and optional elements that
are valid in acommand. A diagram begins at the upper left with acommand.
It ends at the upper right with a vertical line. Between these points, you can
trace any path that does not stop or back up. Each path describes a valid form
of the command. You must supply a value for words that are in italics.

Introduction 9

Command-Line Conventions

10

Elements That Can Appear on the Path

You might encounter one or more of the following elements on a path.

Element

Description

command

variable

-flag

.ext

wt*-/)

Privileges
p. 6-17

— ALL —

This required element is usually the product name or
other short word used to invoke the product or call the
compiler or preprocessor script for a compiled
Informix product. It may appear alone or precede one
or more options. You must spell a command exactly as
shown and must use lowercase letters.

A word in italics represents a value that you must
supply, such as a database, file, or program name. The
nature of the value is explained immediately following
the diagram.

A flag is usually an abbreviation for a function, menu,
or option name or for a compiler or preprocessor
argument. You must enter a flag exactly as shown,
including the preceding hyphen.

A filename extension, such as .sql or .cob, might follow
a variable representing a filename. Type this extension
exactly as shown, immediately after the name of the file
and a period. The extension may be optional in certain
products.

Punctuation and mathematical notations are literal
symbols that you must enter exactly as shown.

Double quotes are literal symbols that you must enter
as shown. You can replace a pair of double quotes with
a pair of single quotes, if you prefer. You cannot mix
double and single quotes.

A reference in a box represents a subdiagram on the
same page or another page. Imagine that the subdi-
agram is spliced into the main diagram at this point.

A shaded option is the default. Even if you do not
explicitly type the option, it will be in effect unless you
choose another option.

(1of2)

IBM Informix OnLine Database Server Administrator's Guide

Command-Line Conventions

Element Description

A branch below the main line indicates an optional

L _f path.

The vertical line is a terminator and indicates that the
_{ statement is complete.

> > Commands enclosed in a pair of arrows indicate that
this is a subdiagram.

A gate (/1\) in an option indicates that you can only
use that option once, even though it is within a larger

(> loop.
tz

How to Read a Command-Line Diagram

(2 0f 2)

Figure 1 shows the elements of an OnLine utility command used to unload
OnLine data in binary, disk-page units:

Figure 1
Example of a Command-Line Diagram

tbunload database
Specify f L
Tape
Parameters table name _

p. 7-109

Introduction 11

Sample Code Conventions

12

To construct a similar command, start at the top left with the command
t bunl oad. Then follow the diagram to the right, including the elements that
you want. Figure 1 illustrates the following steps.

1. Type tbunl oad.

2. Optionally, change the parameters of the tape device that is to receive
the data.

If you wish to do this, turn to page 7-109 for further syntax informa-
tion. Otherwise, tbunload uses the current archive tape device.

3. Specify either a database name or a table name to indicate the data
that you wish to copy to tape.

You can take the direct route to the terminator, or you can take an
optional path indicated by any one of the branches below the main
line.

Once you are back at the main diagram, you come to the terminator.
Your t bunl oad command is complete.

4. Press RETURN to execute the command.

Sample Code Conventions

Examples of SQL code appear throughout this manual. Except where noted,
the code is not specific to any single Informix application development tool.
If only SQL statements are listed, they are not delineated by semicolons.

For instance, you might see the following example code:

DATABASE st or es

DELETE FROM cust oner
WHERE custonmer _num = 121

COW T WORK
CLOSE DATABASE

IBM Informix OnLine Database Server Administrator's Guide

Sample Code Conventions

To use this SQL code for a specific product, you must apply the syntax rules
for that product. For example, if you are using DB-Access or IBM Informix
SQL, you must delineate the statements with semicolons. If you are using an
embedded language, you must use EXEC SQL and a semicolon (or other
appropriate delimiters) at the start and end of each statement, respectively.

For detailed directions on using SQL statements for a particular application
development tool, see the manual for your product.

Tip: Ellipsis points in a code example indicate that more code would be added in a
full application, but it is not necessary to show it to describe the concept being
discussed.

Introduction 13

Additional Documentation

14

Additional Documentation

For additional information, refer to the following types of documentation:

= Printed manuals

= Error message files

= Documentation notes, release notes, and machine notes
= Related reading

Printed Manuals

You might want to refer to a number of related Informix product documents
that complement this manual.

= If you have never used SQL (Structured Query Language) or an
Informix application development tool, read IBM Informix Guide to
SQL: Tutorial to learn basic database design and implementation
concepts.

= A companion volume to the tutorial, IBM Informix Guide to SQL:
Reference, provides full information on the structure and contents of
the demonstration database that is provided with OnLine. Itincludes
details of the Informix system catalog tables, describes Informix and
common UNIX environment variables that should be set, and defines
column data types supported by Informix products. Further, it
provides a detailed description of all the SQL statements supported
by Informix products. It also contains a glossary of useful terms.

= You, or whoever installs OnLine, should refer to the UNIX Products
Installation Guide for your particular release to ensure that OnLine is
properly set up before you begin to work with it.

» Ifyouare using OnLine across a network, you may also want to refer
to the 1BM Informix NET and IBM Informix STAR Installation and Config-
uration Guide.

IBM Informix OnLine Database Server Administrator's Guide

Error Message Files

= The DB-Access User’s Manual describes how to invoke the utility to
access, modify, and retrieve information from OnLine relational
databases.

= When errors occur, you can look them up by number and find their
cause and solution in the IBM Informix Error Messages manual. If you
prefer, you can look up the error messages in the online message file
described in “Error Message Files” on page 15.

Error Message Files

Informix software products provide ASCII files that contain all the Informix
error messages and their corrective actions. To access the error messages in
the ASCII file, Informix provides scripts that let you display error messages
on the terminal or print formatted error messages.

The optional IBM Informix Messages and Corrections product provides
PostScript files that contain the error messages and their corrective actions. If
you have installed this product, you can print the PostScript files on a
PostScript printer.

Using the ASCII Error Message File

You can use the file that contains the ASCII text version of the error messages
and their corrective actions in two ways:

= Use the finderr script to display one or more error messages on the
terminal screen.

= Use the rofferr script to print one error message or a range of error
messages.

The scripts are in the SINFORMIXDIR/bin directory. The ASCII file has the
following path:

$I NFORM XDl R/ nsg/ er r nsg. t xt

The error message numbers range from -1 to -33000. When you specify these
numbers for the finderr or rofferr scripts, you can omit the minus sign. A few
messages have positive numbers; these messages are used solely within the
application development tools. In the unlikely event that you want to display
them, you must precede the message number with a + sign.

Introduction 15

Error Message Files

The messages numbered -1 to -100 can be platform-dependent. If the message
text for a message in this range does not apply to your platform, check the
operating system documentation for the precise meaning of the message
number.

The finderr Script

Use the finderr script to display one or more error messages, and their
corrective actions, on the terminal screen. The finderr script has the following

syntax:
finderr (: nsg_nun1:> I
E + :{
msg_num is the number of the error message to display.

You can specify any number of error messages per finderr command. The
finderr command copies all the specified messages and their corrective
actions to standard output.

For example, to display the -359 error message, you can enter the following
command:

finderr -359

The following example demonstrates how to specify a list of error messages.
This example also pipes the output to the UNIX more command to control the
display. You can also redirect the output to another file so that you can save
or print the error messages:

finderr 233 107 113 134 143 144 154 | nore

16 IBM Informix OnLine Database Server Administrator's Guide

Error Message Files

The rofferr Script

Use the rofferr script to format one error message or a range of error
messages for printing. By default, rofferr displays output on the screen. You
need to send the output to nroff to interpret the formatting commands and
then to a printer, or to a file where the nroff output is stored until you are
ready to print. You can then print the file. For information on using nroff and
on printing files, see your UNIX documentation.

The rofferr script has the following syntax:

rofferr start_msg

S

+

start_msg Is the number of the first error message to format
This error message number is required.
end_msg Is the number of the last error message to format
This error message number is optional. If you omit end_msg,
only start_msg is formatted.
The following example formats error message -359. It pipes the formatted
error message into nroff and sends the output of nroff to the default printer:
rofferr 359 | nroff -man | |pr

The following example formats and then prints all the error messages
between -1300 and -4999:

rofferr -1300 -4999 | nroff -man | |pr

Introduction 17

Documentation Notes, Release Notes, Machine Notes

18

Using the PostScript Error Message Files

Use the IBM Informix Messages and Corrections product to print the error
messages and their corrective actions on a PostScript printer. The PostScript
error messages are distributed in a number of files of the format errmsg1.ps,
errmsg2.ps, and so on. These files are located in the SINFORMIXDIR/msg
directory. Each file contains approximately 50 printed pages of error
messages.

Documentation Notes, Release Notes, Machine Notes

In addition to the IBM Informix set of manuals, the following online files,
located in the $INFORMIXDIR/release directory, supplement the information
in this manual. Please examine these files because they contain vital infor-
mation about application and performance issues.

Online File Purpose

ONLINEDOC 5 The documentation notes file for your version of this manual
describes features that are not covered in the manual or that
were modified since publication.

ENGREL _5 The release notes file describes feature differences from earlier
versions of IBM Informix products and how these differences
might affect current products. This file also contains infor-
mation about any known problems and their workarounds.

ONLINE_5 The machine notes file describes any special actions that you
must take to configure and use IBM Informix products on your
computer. Machine notes are named for the product described.

IBM Informix OnLine Database Server Administrator's Guide

Related Reading

Related Reading

If you have had no prior experience with database management, you may
want to refer to an introductory text like C. J. Date’s An Introduction to
Database Systems: Seventh Edition (Addison-Wesley Publishing, 1999). If you
want more technical information on database management, consider
consulting the following tests:

= Database Systems: A Practical Approach to Design, Implementation, and
Management, 3rd Edition, by C. Begg and T. Connolly (Addison-
Wesley Publishing, 2001)

= Inside Relational Databases, 2nd Edition, by M. Whitehorn and B.
Marklyn (Springer-Verlag, 2001)

This guide assumes you are familiar with your computer operating system.
If you have limited UNIX system experience, you may want to look at your

operating system manual or a good introductory text before starting to learn
about IBM Informix OnLine.

Some suggested texts about UNIX systems follow:

= A Practical Guide to the UNIX System, 3rd Edition by M. Sobell
(Addison-Wesley Publishing, 1994)

= Learning the UNIX Operating System by J. Peek (O’Reilly & Associates,
1997)

= Design of the UNIX Operating System by M. Bach (Prentice-Hall, 1987)

Compliance with Industry Standards

The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. IBM Informix SQL-based products are fully
compliant with SQL-92 Entry Level (published as ANSI X3.135-1992), which is
identical to 1SO 9075:1992. In addition, many features of Informix database
servers comply with the SQL-92 Intermediate and Full Level and X/Open
SQL CAE (common applications environment) standards.

Introduction 19

IBM Welcomes Your Comments

20

IBM Welcomes Your Comments

To help us with future versions of our manuals, we want to know about any
corrections or clarifications that you would find useful. Include the following
information:

= The name and version of your manual
= Any comments that you have about the manual
= Your name, address, and phone number

Send electronic mail to us at the following address:
doc@informix.com

This address is reserved for reporting errors and omissions in our documen-
tation. For immediate help with a technical problem, contact Customer
Services.

We appreciate your suggestions.

IBM Informix OnLine Database Server Administrator's Guide

Installation and Initial
Configuration

In This Chapter .

Define Your Starting Point
Upgrade an Earlier Version of Oane

Compare Your Current Configuration to OnLlne 5 X

Create a Level-0 Archive .
Load the Software and Execute the mstall Scrlpt
Initialize Shared Memory . S
Run tbcheck
Create a New Level-0 Archlve

Overview of OnLine Installation Steps.

Overview of OnLine Initial Configuration Tasks.
OnLine Configuration Files

Contents of tbconfig.std .

Set Up Your Initial Configuration . .

Root Dbspace Configuration Gwdellnes .
ROOTNAME .
ROOTPATH .
ROOTOFFSET .
ROOTSIZE .

Mirroring Configuration GU|deI|nes
MIRROR. .
MIRRORPATH .
MIRROROFFSET .

Physical Log Configuration Gwdellnes
PHYSDBS .
PHYSFILE . .

Logical Log Configuration Gwdellnes
LOGFILES .
LOGSIZE

1-5

1-6
1-7

1-8
1-8

1-9
1-9
1-10

1-10
1-11
1-13

1-20
1-21
1-21
1-22
1-22
1-23
1-24
1-24
1-24
1-25
1-25
1-25
1-25
1-26
1-27
1-27

Message File Guidelines. 1-28

MSGPATH 128
CONSOLE C e 128
Archive Tape Device Gwdelmes P 24

TAPEDEV 128
TAPEBLK 129
TAPESIZE P st
Logical Log Tape Device Gmdelmes P LY

LTAPEDEV 13
LTAPEBLK 130
LTAPESIZE. . . . e 1
Identification Parameter Gmdelmes T X

SERVERNUM 13
DBSERVERNAME P X 4
Shared-Memory Parameter Gmdelmes T R Y

RESIDENT 13
USERS . . . N K
TRANSACTIONS N X
LOCKS 133
BUFFERS 134
TBLSPACES. 134
CHUNKS 13
DBSPACES 135
PHYSBUFF. 135
LOGBUFF 136
LOGSMAX 136
CLEANERS. 136
SHMBASE 137
CKPTINTVL 137
LRUS . . . N Y
LRU_MAX_ DIRTY N Y
LRU MIN_DIRTY 138
LTXHWM 138
LTXEHWM 138
Machine- and Product- Specmc Parameter Gwdelmes. 139

DYNSHMSz 139
GTRID_.CMP_SZ 139
DEADLOCK_TIMEOUT 139
TXTIMEOUT 139
SPINCNT 140

1-2 IBM Informix OnLine Database Server Administrator's Guide

OnLine Disk Space Allocation 140

Allocate Raw Disk Space or Cooked F|Ies7 e R 10]

How Much Disk Space Do YouNeed? 141

How Should You Apportion Disk Space? 143

How to Allocate Disk Space. 147
Evaluate UNIX Kernel Parameters 149
Configuration Checklist. 150
Enter Your Configuration and Initialize OnLine 151
Setting Shared Memory Parameters 153
Initialize OnLine e

Set Your Environment Varlables T
SQLEXEC .155
TBCONFIG155
Modify UNIX Startup and Shutdown Scrlpts 156
Startup .57
Shutdown . . . s e 158

Create Blobspaces and Dbspaces P)
Errors During Initialization 159
OnLine Error Message Format 160
UNIX Error Message Format. 160

Installation and Initial Configuration 1-3

1-4 IBM Informix OnLine Database Server Administrator's Guide

In This Chapter

This chapter describes how to get started administering your IBM Informix
OnLine environment.

You need the following items to install your OnLine database server:

= UNIX Products Installation Guide
= IBM Informix OnLine electronic media
= IBM Informix OnLine serial number keycard

The specific steps that you should follow as part of your installation depend
on your environment. To find the starting point that is right for you, refer to
page 1-6.

Installation refers to the three-step procedure of preparing your UNIX
environment, loading the product files onto your UNIX system, and running
the installation script to correctly set up the product files. An overview of the
installation procedure is illustrated on page 1-10 and described in detail in
the UNIX Products Installation Guide.

Initial configuration refers to the set of values that OnLine reads and imple-
ments the first time that you initialize OnLine disk space. The initial
configuration receives special attention because of the number of adminis-
trative issues that you must consider as you define the values for your initial
configuration.

Initial configuration tasks refers to the steps that you complete as you take
OnLine to online mode for the first time and prepare your OnLine system to
receive data. This chapter explains each of the configuration tasks, including
how to arrive at the initial configuration values that are correct for your
OnLine environment and how to enter these values and initialize OnLine.

Installation and Initial Configuration 1-5

Define Your Starting Point

1-6

Define Your Starting Point

This section directs you to the starting point for your specific installation and
configuration.

If you are installing an IBM Informix OnLine 5.x product for the first time,
follow all the steps illustrated on page 1-10. After you complete the software
load and installation, turn to page 1-10 of this manual for instructions on
completing your initial configuration for OnLine 5.x.

If you are replacing an IBM Informix SE or other database server with the
OnLine 5.x database server, you must unload your current data. The OnLine
utilities for importing data accept ASCII files as input. Read the sections in
this manual that discuss data migration before you unload your data. (Refer
to page 4-52.) When you are ready to install OnLine 5.x, follow all the steps
illustrated on page 1-10. After you complete the software load and instal-
lation, turn to page 1-10 of this manual for instructions on completing your
initial configuration for OnLine 5.x.

If you are installing OnLine 5.x and plan to run more than one independent
OnLine 5.x database server on the same host machine, you must define
different configuration files for each instance of OnLine. This situation of
multiple OnLine 5.x systems is referred to as multiple residency. Refer to
page 9-7 for a complete discussion of multiple-residency issues. When you
are ready to install OnLine 5.x, follow all the steps illustrated on page 1-10.
After you complete the software load and installation, turn to page 1-10 of
this manual for instructions on completing your initial configuration for
OnLine 5.x.

If you are installing OnLine 5.x and plan to run it on the same host machine
where you are running IBM Informix SE, you can load the OnLine 5.x
software into the same $INFORMIXDIR directory that contains your

IBM Informix SE software. You do not need to define a different value for
INFORMIXDIR. To install OnLine 5.x, follow the steps illustrated on

page 1-10, beginning with the second step, loading the software. After you
complete the software load and installation, turn to page 1-10 of this manual
for instructions on completing your initial configuration for OnLine 5.x.

IBM Informix OnLine Database Server Administrator's Guide

Upgrade an Earlier Version of OnLine

If you are installing OnLine 5.x and plan to run it on the same host machine
where you are running an earlier version of OnLine, you must load the
OnLine 5.x software into a different SINFORMIXDIR directory than the one
that contains your earlier server software. To install OnLine 5.x, follow all the
steps illustrated on page 1-10. Be sure that you define the OnLine 5.x INFOR-
MIXDIR and PATH environment variables correctly for user informix. After
you complete the software load and installation, turn to page 1-10 of this
manual for instructions on completing your initial configuration for

OnLine 5.x.

Upgrade an Earlier Version of OnLine

If you are upgrading an earlier version of OnLine, you do not need to allocate
more UNIX disk space than is already set aside for OnLine. The tasks in the
upgrade procedure follow:

1. Compare Your Current Configuration to OnLine 5.x.
Create a Level-0 Archive.
Load the Software and Execute the install Script.

2

3

4. Initialize Shared Memory.

5 Run tbcheck to verify database integrity.
6

Create a New Level-0 Archive.

Warning: Do not initialize disk space if you are upgrading your OnLine system. If
you initialize disk space, you destroy your current OnLine system and all existing
data.

Compare Your Current Configuration to OnLine 5.x

OnLine 5.x adds 10 configuration parameters to support features and
improved performance. Informix recommends that you compare the
contents of tbconfig.std to your current configuration file before you
initialize shared memory. You might decide to modify your current configu-
ration or to specify nondefault values when you initialize shared memory to
better take advantage of OnLine 5.x features. The contents of tbconfig.std are
described on page 1-13. Guidelines for setting the values of the parameters
begin on page 1-20.

Installation and Initial Configuration 1-7

Upgrade an Earlier Version of OnLine

1-8

Create a Level-0 Archive

Ask all users to exit their applications before you begin the upgrade
procedure. (Perform a graceful shutdown by executing tbmode -s from the
command line.) Create a level-0 archive of your current OnLine system. Keep
a copy of your current configuration file for reference.

Load the Software and Execute the install Script

Take OnLine to offline mode. (Execute tbmode -ky.) Verify that you are
logged in as user root. (The scriptinstalls OnLine 5.x into the SINFORMIXDIR
directory specified for user root.)

Instructions for loading the software and executing the installation script are
contained in the UNIX Products Installation Guide. OnLine 5.x overwrites any
OnLine database server products that might exist in the $INFORMIXDIR
directory.

Initialize Shared Memory

Log out as user root and log in again as user informix. Reinitialize OnLine
shared memory from the DB-Monitor Parameters menu, Shared-Memory
option, or from the command line (execute tbinit). When you initialize
shared memory, your current OnLine configuration file is updated for
OnLine 5.x. If you do not specify values for the new parameters, default
values are assigned.

If you are unfamiliar with the shared-memory initialization procedure, turn
to page 3-8.

IBM Informix OnLine Database Server Administrator's Guide

Upgrade an Earlier Version of OnLine

Run tbcheck

Verify the integrity of the upgraded 5.x databases before you continue. To do
this, execute the following commands from the system prompt:

tbcheck -ci dbnane Checks and verifies the integrity of the database
indexes.

tbcheck -cD dbnane Checks and verifies the integrity of database data.

tbcheck -cc dbnane Checks and verifies the integrity of the OnLine
5.x system catalog tables.

t bcheck -cr Checks and verifies the integrity of the OnLine
5.x reserved pages.

If you encounter any inconsistencies, refer to page 4-6.

Create a New Level-0 Archive

After OnLine 5.x is initialized, create a level-0 archive of the OnLine 5.x
system. When the archive is completed, take OnLine to online mode.

Databases are automatically upgraded to OnLine 5.x format when they are
opened for the first time. Part of the upgrading procedure for databases is the
creation of Version 5.x system catalog tables for each database. For further
information about the 5.x SQL system catalog, refer to the IBM Informix Guide
to SQL: Reference.

Installation and Initial Configuration 1-9

Overview of OnLine Installation Steps

1-10

Overview of OnLine Installation Steps

Installing OnLine 5.x involves three major steps, which are summarized here.
For detailed information, see the UNIX Products Installation Guide.

Important: For each step, you must be logged in as root.
1. Create UNIX environment:
= Create user informix.
= Set INFORMIXDIR.
= Set PATH.
= Change your directory to $INFORMIXDIR.

2. Load OnLine 5.x software:
s Copy Informix files into the Informix installation directory.

3. Install OnLine 5.x:

= Run .installonline to change owner, group, and mode of
product files.

Overview of OnLine Initial Configuration Tasks

OnLine initial configuration includes configuration planning and disk-space
initialization. The rest of this chapter provides instructions for the initial
configuration tasks.

Since OnLine 5.x is already installed in $INFORMIXDIR, you can use a UNIX
editor to examine the configuration file tbconfig.std that is described in the
following pages. You can also access the OnLine monitor facility, DB-Monitor.
To do so, log in as user informix and enter the command tbmonitor at the
command line.

IBM Informix OnLine Database Server Administrator's Guide

OnLine Configuration Files

OnLine Configuration Files

You are not limited to just one configuration file. You can create and manage
multiple OnLine configuration files, and each file can contain a unique set of
configuration parameter values. This section explains how multiple configu-
ration files are created and managed.

As part of OnLine 5.x installation, the product software is loaded into the
Informix product directory, specified as the environment variable INFOR-
MIXDIR. One of the files loaded during installation is tbconfig.std, which is
located in the directory $INFORMIXDIR/etc. The tbconfig.std file contains the
default values for the configuration parameters and serves as the template
for all other configuration files that you create.

The OnLine environment variable TBCONFIG specifies the name of the UNIX
file (which must be located in the directory $INFORMIXDIR/etc) that is read
as input to either the disk-space or shared-memory initialization procedure.
The TBCONFIG environment variable enables you to create and maintain
multiple configuration files, each with different values. As user informix,
you can initialize OnLine shared memory with a different set of configuration
parameters by resetting the value of TBCONFIG.

The default value of TBCONFIG is defined as tbconfig. When you first load
the OnLine 5.x software, the file tbconfig does not exist. The tbconfig file is
created for you the first time that you initialize OnLine. If you initialize from
within DB-Monitor, the tbconfig file contains the parameter values entered as
part of initialization. If you initialize from the command line, using the
OnLine utility tbinit, the tbconfig file contains default values obtained from
tbconfig.std.

You set the value of TBCONFIG when you define the environment variables
as one of your last tasks during installation.

You can modify the configuration file from within DB-Monitor while OnLine
is online. The changes you make are written immediately to the file specified
as TBCONFIG. If TBCONFIG is not specified, OnLine modifies the file tbconfig.
But even though the values in the file change, most changes to the parameter
values do not take effect until you reinitialize OnLine shared memory. Until
you take this step, it is possible that the values in the file specified as

TBCONFIG do not match the values in your current, effective configuration.

Installation and Initial Configuration 1-11

OnLine Configuration Files

1-12

If you modify the configuration file while OnLine is online, you might want
to compare the current configuration values with the new values stored in the
file specified as TBCONFIG.

To obtain a copy of your current, effective OnLine configuration through
DB-Monitor, choose the Status menu, Configuration option. You are asked to
supply a filename for the output file. If you supply a filename (without a
directory location), a copy of the current configuration is stored in
filename.out in the current working directory.

To display a copy of the configuration file, SINFORMIXDIR/etc/$STBCONFIG,
execute the command tbstat -c at the UNIX prompt while OnLine is running.
(If TBCONFIG is not specified, OnLine displays the contents of $INFOR-
MIXDIR/etc/tbconfig by default.)

You can use a UNIX system editor to create other configuration files (apart
from tbconfig.std, tbconfig, and the file specified by TBCONFIG). Each config-
uration file must be located in the $INFORMIXDIR/etc directory. The
requirement that all configuration files must exist in $INFORMIXDIR/etc
means that you cannot make the directory read-only. If you do, you are
unable to save any parameter changes you make from DB-Monitor during
OnLine operation. The installation procedure creates the SINFORMIXDIR/etc
with read-only permissions for all users except root and user informix.

Do not add parameters to a configuration file that are not included in
tbconfig.std. If you do, the next time you attempt to modify a configuration
parameter or initialize shared memory through DB-Monitor, OnLine detects
that the unknown parameters do not exist in tbconfig.std and rejects them as
invalid. OnLine removes any parameters from the configuration file that do
not exist in tbconfig.std.

Do not remove the tbconfig.std file. If you do, OnLine is unable to create a
new configuration file the first time you attempt to modify a parameter or
initialize shared memory through DB-Monitor.

Informix recommends that you do not alter the contents of the tbconfig.std
file. All supported parameters are contained in tbconfig.std.

IBM Informix OnLine Database Server Administrator's Guide

Contents of thconfig.std

Contents of tbconfig.std

The tbconfig.std file contains all OnLine configuration parameters. The
paragraphs that follow name each parameter and provide a brief definition.
The parameters are listed in alphabetic order, not in the order in which they
appear in tbconfig.std. Figure 1-1 displays a copy of the tbconfig.std file.

(If you are unfamiliar with the terms used by Informix to describe units of
disk space, refer to the IBM Informix Guide to SQL: Tutorial.)

BUFFERS specifies the number of OnLine shared-memory page buffers
available to OnLine user processes. Refer to page 1-34 for information about
setting the value of this parameter.

BUFFSIZE is an unalterable configuration parameter that specifies the page
size for this platform. Changes made to the value shown for BUFFSIZE have
no effect.

CHUNKS specifies a value that approximates the maximum number of
chunks that OnLine can support on this specific hardware platform. The
number of chunks can be system-dependent. Refer to page 1-35 for infor-
mation about setting the value of this parameter.

CKPTINTVL specifies the maximum interval, expressed in seconds, that can
elapse before OnLine checks to determine if a checkpoint is needed. When a
checkpoint occurs, pages in the shared-memory buffer pool disk are synchro-
nized with the corresponding pages on disk. Refer to page 1-37 for
information about setting the value of this parameter.

CLEANERS specifies the number of dedicated page-cleaner daemons to
initialize for this OnLine configuration. Refer to page 1-36 for information
about setting the value of this parameter.

CONSOLE specifies the pathname destination for console messages. The
default value, /dev/console, sends messages to the system console screen.
Refer to page 1-28 for information about setting the value of this parameter.

DBSERVERNAME specifies the unique name of this OnLine database server,
as distinguished from other OnLine database servers that might exist in the
$INFORMIXDIR directory or in a client/server environment. Refer to

page 1-32 for information about setting the value of this parameter.

Installation and Initial Configuration 1-13

Contents of thconfig.std

1-14

DBSPACES specifies the maximum number of dbspaces supported by this
OnLine configuration. Like CHUNKS, the number of dbspaces can be system-
dependent. Refer to page 1-35 for information about setting the value of this
parameter.

DEADLOCK_TIMEOUT specifies the maximum number of seconds that an
OnLine user process can wait to acquire a lock in a client/server
environment. The parameter is used only if this OnLine configuration uses
the distributed capabilities of IBM Informix STAR. Refer to page 9-57 for infor-
mation about setting the value of this parameter.

DYNSHMSZ specifies the amount of shared memory that is allocated during
initialization and made available to the database servers during execution.
This parameter is only used by the IBM Informix TP/XA product. Refer to the
IBM Informix TP/XA User Manual for information about setting the value of this
parameter.

GTRID_CMP_SZ specifies the number of bytes to compare for global trans-
action identification numbers. This parameter is only used by the

IBM Informix TP/XA product. Refer to the IBM Informix TP/XA User Manual for
information about setting the value of this parameter.

LOCKS specifies the maximum number of locks available to OnLine user
processes. Refer to page 1-33 for information about setting the value of this
parameter.

LOGBUFF specifies in kilobytes the size of each of the three logical log buffers
that reside in shared memory. Refer to page 1-36 for information about
setting the value of this parameter.

LOGFILES specifies the number of logical log files currently configured for
OnLine. You set this value initially. However, if you add or drop logs during
OnLine operation, this value is updated automatically. Refer to page 1-27 for
information about setting the value of this parameter.

LOGSIZE specifies in kilobytes the size of each logical log file maintained by
OnLine. The total disk space dedicated to the logical logs is equal to
LOGFILES multiplied by LOGSIZE. Refer to page 1-27 for information about
setting the value of this parameter.

LOGSMAX specifies the maximum number of logical log files supported by
this OnLine configuration. Refer to page 1-36 for information about setting
the value of this parameter.

IBM Informix OnLine Database Server Administrator's Guide

Contents of thconfig.std

LRUS specifies the number of LRU (least-recently used) queues. The LRU
gueues manage the shared-memory buffer pool. Refer to page 1-37 for infor-
mation about setting the value of this parameter.

LRU_MAX_DIRTY specifies the percentage of modified pages in the LRU
gueues that, when reached, flags the queue to be cleaned. Refer to page 1-37
for information about setting the value of this parameter.

LRU_MIN_DIRTY specifies the percentage of modified pages in the LRU
gueues that, when reached, flags the page cleaners that cleaning is no longer
mandatory, although it might continue for other reasons. Refer to page 1-38
for information about setting the value of this parameter.

LTAPEBLK specifies in kilobytes the size of the tape block for the logical log
backup tape device. Refer to page 1-30 for information about setting the
value of this parameter.

LTAPEDEV specifies the device pathname of the logical log backup tape
device. Refer to page 1-30 for information about setting the value of this
parameter.

LTAPESIZE specifies in kilobytes the maximum amount of data that should be
stored on a tape mounted on the logical log backup tape device. Refer to
page 1-31 for information about setting the value of this parameter.

LTXEHWM specifies the “long transaction, exclusive access, high-water
mark.” The LTXEHWM is a higher percentage than the LTXHWM percentage.
If the logical log fills to LTXEHWM, the long transaction currently being rolled
back is given “exclusive” access to the logical log. The term “exclusive” is not
entirely accurate. Most OnLine activity is suspended until the transaction has
completed its rollback, but transactions that are in the process of rolling back
or committing retain access to the logical log. Refer to page 1-38 for infor-
mation about setting the value of this parameter.

LTXHWM specifies the “long transaction high-water mark.” The value of
LTXHWM is the percentage of available logical log space that, when filled,
triggers the tbinit daemon to check for a long transaction. If a long trans-
action is found, the transaction is aborted and the executing OnLine database
server process rolls back all modifications associated with it. Refer to

page 1-38 for information about setting the value of this parameter.

Installation and Initial Configuration 1-15

Contents of thconfig.std

1-16

MIRROR specifies whether OnLine blobspace and dbspace mirroring is
enabled. Refer to page 1-24 for information about setting the value of this
parameter.

MIRROROFFSET specifies in kilobytes the offset into the disk partition or into
the device to reach the beginning of the mirror chunk. Refer to page 1-25 for
information about setting the value of this parameter.

MIRRORPATH specifies the pathname of the mirror chunk where the mirrored
root dbspace resides. Informix recommends that this value be a linked
pathname that points to the mirror-chunk device. Refer to page 1-24 for infor-
mation about setting the value of this parameter.

MSGPATH specifies the pathname of the OnLine message log. The message
log contains diagnostic and status messages that document OnLine
operation. Refer to page 1-28 for information about setting the value of this
parameter.

PHYSBUFF specifies in kilobytes the size of each of the two physical log
buffers that reside in shared memory. Refer to page 1-35 for information
about setting the value of this parameter.

PHYSDBS specifies the name of the dbspace where the physical log resides.
When OnLine disk space isfirst initialized, the physical log must reside in the
root dbspace. After initializing, you can move the physical log out of the root
dbspace to improve performance. Refer to page 1-25 for information about
setting the value of this parameter.

PHYSFILE specifies in kilobytes the size of the physical log. Refer to page 1-25
for information about setting the value of this parameter.

RESIDENT indicates whether OnLine shared memory will remain resident in
UNIX physical memory. Not all UNIX operating systems support forced
residency. Refer to page 1-32 for information about setting the value of this
parameter.

ROOTNAME specifies the name of the root dbspace. Refer to page 1-21 for
information about setting the value of this parameter.

ROOTOFFSET specifies in kilobytes the offset into the disk partition or into the
device to reach the beginning of the initial chunk of the root dbspace. Refer
to page 1-22 for information about setting the value of this parameter.

IBM Informix OnLine Database Server Administrator's Guide

Contents of thconfig.std

ROOTPATH specifies the pathname of the chunk where the root dbspace
resides. Informix recommends that this value be a link that points to the root
dbspace chunk device. Refer to page 1-22 for information about setting the
value of this parameter.

ROOTSIZE specifies the size of the root dbspace in kilobytes. Refer to
page 1-23 for information about setting the value of this parameter.

SERVERNUM specifies a unique identification number which, along with the
DBSERVERNAME, distinguishes this OnLine database server from all others.
Refer to page 1-31 for information about setting the value of this parameter.

SHMBASE specifies the address that serves as the base of shared memory
when shared memory is attached to the memory space of a user process.
Refer to page 2-26 for information about the value of this parameter.

SPINCNT is supported by some multiprocessor machines. Refer to page 1-40
for information about setting the value of this parameter.

TAPEBLK specifies in Kilobytes the size of the tape block for the archive tape
device. Refer to page 1-29 for information about setting the value of this
parameter.

TAPEDEYV specifies the device pathname of the archive tape device. Refer to
page 1-28 for information about setting the value of this parameter.

TAPESIZE specifies in kilobytes the maximum amount of data that should be
stored on a tape mounted on the archive tape device. Refer to page 1-29 for
information about setting the value of this parameter.

TBLSPACES specifies the maximum number of open or active tblspaces
supported by this OnLine configuration. Refer to page 1-34 for information
about setting the value of this parameter.

TRANSACTIONS specifies the maximum number of concurrent OnLine user
processes supported by this OnLine configuration. As a general guideline,
TRANSACTIONS is set to the value of USERS. Refer to page 1-33 for infor-
mation about setting the value of this parameter.

TXTIMEOUT specifies, for a client/server environment, the maximum
number of seconds that an OnLine database server waits for a transaction
during a two-phase commit. This parameter is used only if OnLine uses the
distributed capabilities of IBM Informix STAR. Refer to page 9-57 for infor-
mation about setting the value of this parameter.

Installation and Initial Configuration 1-17

Contents of thconfig.std

USERS specifies the maximum number of OnLine user processes that can
attach to shared memory concurrently. A user process is broadly defined as a
process that is, or will be, attached to shared memory. User processes include
database server processes, daemon processes, and utility processes. (In this
manual, no reference is made to application tool processes.) Refer to

page 1-33 for information about setting the value of this parameter.

Figure 1-1
The Contents of thconfig.std

AR R AR R R R R R EEEEEEEEEEEE SRR EEEEE R EEEE]

#
I NFORM X SOFTWARE, | NC.
#
Title: tbconfig.std
Sccsid: @#)tbconfig.std 8.5 6/11/91 16:19: 05
Description: | NFORM X- OnLi ne Configuration Paraneters
z**i

Root Dbspace Configuration

ROOTNAME rootdbs # Root dbspace nane
ROOTPATH / dev/ onl i ne_r oot

Path for device containing root dbspace
ROOTCOFFSET 0 # O fset of root dbspace into device (Kbytes)
ROOTSI ZE 20000 # Size of root dbspace (Kbytes)

Disk Mrroring Configuration

M RROR 0 # Mrroring flag (Yes = 1, No = 0)

M RRORPATH # Path for device containing root
dbspace mrror

M RROROFFSET 0 # Ofset into mirror device (Kbytes)

Physical Log Configuration

PHYSDBS rootdbs # Nanme of dbspace that contains physical |og
PHYSFI LE 1000 # Physical log file size (Kbytes)

Logical Log Configuration

LOGFI LES 6 # Nurmber of logical log files
LOGSI ZE 500 # Size of each logical log file (Kbytes)

Message Fil es

MSGPATH /usr/inform x/online.log
OnLi ne nmessage | og pat hnane
CONSOLE / dev/ consol e

System consol e nessage pat hnane

Archive Tape Device

1-18 IBM Informix OnLine Database Server Administrator's Guide

Contents of thconfig.std

TAPEDEV / dev/ t apedev
Archive tape device pathnane
TAPEBLK 16 # Archive tape bl ock size (Kbytes)

TAPESI ZE 10240 # Max. anpunt of data to put on tape (Kbytes)
Logi cal Log Backup Tape Device

LTAPEDEV / dev/t apedev
Logical |og tape device pathnane

LTAPEBLK 16 # Logical 1og tape block size (Kbytes)
LTAPESI ZE 10240 # Max armount of data to put on log tape
(Kbyt es)

ldentification Paraneters

SERVERNUM 0 # Unique id associated with this OnLine
i nst ance
DBSERVERNAME ONLI NE # Uni que nane of this OnLine instance

Shared Menory Paraneters

LRU_MAX_DI RTY 60
LRU M N_DI RTY 50
LTXHM 80
LTXEHWM 90

LRU nodi fi ed begin-cleaning limt (percent)
LRU nodi fied end-cleaning limt (percent)
Long TX hi gh-water mark (percent)

Long TX exclusive high-water mark (percent)

RESI DENT 0 # Forced residency flag (Yes = 1, No = 0)
USERS 20 # Maxi mum nunber of concurrent user processes
TRANSACTI ONS 20 # Maxi mum nunmber of concurrent transactions
LOCKS 2000 # Maxi mum nunber of | ocks
BUFFERS 200 # Maxi mum nurmber of shared nenory buffers
TBLSPACES 200 # Maxi mum nunber of active tbl spaces
CHUNKS 8 # Maxi mum nunmber of chunks
DBSPACES 8 # Maxi mum nunber of dbspaces and bl obspaces
PHYSBUFF 32 # Size of physical |1og buffers (Kbytes)
LOGBUFF 32 # Size of logical |og buffers (Kbytes)
LOGSMAX 6 # Maxi mum nunber of logical log files
CLEANERS 1 # Nurmber of page-cl eaner processes
SHVBASE 0x400000 # Shared nmenory base address
CKPTI NTVL 300 # Checkpoint interval (in seconds)
LRUS 8 # Nunmber of LRU queues

#

#

#

#

Machi ne- and Product- Specific Paraneters

DYNSHMSZ 0 # Dynam c shared nmenory size (Kbytes)
GIRI D _CWP_SZ 32 # Nurmber of bytes to use in GIRI D conparison
DEADLOCK_TI MEOUT 60 # Max tinme to wait for lock in distributed

env.
TXTI MEQUT 300 # Transaction timeout for |-STAR (in seconds)
SPI NCNT 0 # No. of times process tries for latch

Installation and Initial Configuration 1-19

Set Up Your Initial Configuration

1-20

(mul tiprocessor-machi ne default is 300)
STAGEBLOB # | NFORM X- OnLi ne/ Opti cal staging area

System Page Size

BUFFSI ZE nachi ne-speci fic # Page size (do not change!)

Set Up Your Initial Configuration

This chapter uses a workbook approach to help you define your initial
configuration. The configuration worksheet lists each parameter needed for
initialization. The default value for the parameter is displayed in bold type
next to the parameter name. Additional lines are provided for you to record
your parameter values where they differ from the default. Where appro-
priate, the worksheet includes calculation workspace.

In the pages that follow, each tbconfig. std parameter group is defined in
detail, along with guidelines and instruction to help you choose a value that
is appropriate for your environment. The topics are organized according to
the layout of the tbconfig.std file.

Before you begin, decide on your immediate use for OnLine. Do you plan to
use OnLine in a learning environment for a short time, or do you plan to use
OnLine in a production environment right away?

If you plan to experiment with OnLine as part of learning the product, you
can use the default configuration parameters wherever they are provided. If
your goal is to initialize OnLine for a production environment right away,
carefully consider the effect of each parameter within your application
environment.

Refer to page 1-23 for an explanation of how this decision (default or custom
configuration) affects the size of the root dbspace.

IBM Informix OnLine Database Server Administrator's Guide

Root Dbspace Configuration Guidelines

Root Dbspace Configuration Guidelines

The root dbspace, like all dbspaces, consists of at least one chunk. You can
add other chunks to the root dbspace after OnLine is initialized. All disk
configuration parameters refer to the first (initial) chunk of the root dbspace.

The root dbspace contains information that is critical for OnLine operation.

Specific control and tracking information needed for OnLine operation is
stored in the root dbspace reserved pages.

At initialization, the root dbspace also contains the physical log and all
OnLine logical log files. After OnLine is initialized, you can move the logs to
other dbspaces to improve performance.

During operation, the root dbspace is the default location for all temporary
tables created implicitly by OnLine to perform requested data management.
The root dbspace is also the default dbspace location for any CREATE
DATABASE statement.

ROOTNAME

Select a name for the root dbspace for this OnLine configuration. The name

must be unique among all dbspaces and blobspaces. The name cannot exceed
18 characters. Valid characters are restricted to digits, letters, and the under-
score. Informix recommends that you select a name that is easily recognizable
as the root dbspace. The default value of ROOTNAME is rootdbs.

Installation and Initial Configuration 1-21

Root Dbspace Configuration Guidelines

1-22

ROOTPATH

The ROOTPATH parameter specifies the pathname of the initial chunk of the
root dbspace. ROOTPATH is stored in the OnLine reserved pages as a chunk
name.

Informix recommends that, instead of entering the actual device name for the
initial chunk, you define ROOTPATH as a pathname that is a link to the root
dbspace initial chunk. The link enables you to quickly replace the disk where
the chunk is located. The convenience becomes important if you need to
restore your OnLine data. The restore process requires that all chunks that
were accessible at the time of the last archive are accessible when you
perform the restore. The link means that you can replace a failed device with
another device and link the new device pathname to ROOTPATH. You do not
need to wait for the original device to be repaired.

For now, select a link pathname as the chunk pathname for ROOTPATH. You
will determine the actual chunk pathname for the root dbspace when you
allocate disk space. (Refer to page 1-40.) Since the number of chunks
managed by OnLine is affected by the length of the chunk names, select a
short pathname. The default value of ROOTPATH is the link pathname
/dev/online_root.

ROOTOFFSET

ROOTOFFSET specifies the offset into the disk partition or into the device to
reach the initial chunk. Leave this worksheet field blank until you allocate
OnLine disk space. (Refer to page 1-40.) The default value of ROOTOFFSET is
0 KB.

IBM Informix OnLine Database Server Administrator's Guide

Root Dbspace Configuration Guidelines

ROOTSIZE

ROOTSIZE specifies the size of the initial chunk of the root dbspace, expressed
in kilobytes. The size that you select depends on your immediate plans for
OnLine.

The ROOTSIZE default value is 20,000 KB (about 19.5 MB).

If you are configuring OnLine for a learning environment, plan to make the
root dbspace 20 to 60 MB. If you plan to add test databases to this system,
choose the larger size. Enter this value in two places on the configuration
worksheet. First, enter it as the size of the root dbspace in the ROOTSIZE field.
Second, enter it into the field labeled Si ze of the root dbspace on the
second page under the heading Di sk Layout .

If you are configuring OnLine for a production environment, you need to
calculate an appropriate size for the root dbspace.

At the time of initial configuration, the root dbspace must be large enough to
accommodate five possible components:

= Physical log

= Logical log files

= Disk space allocated to accommodate temporary internal tables
needed by OnLine for processing

= Disk space allocated to accommodate any databases or tblspaces that
you might want to store in the root dbspace

= Disk space to accommodate OnLine control information
Your worksheet contains blanks for you to enter the sizes of these component
parts of the root dbspace, as you determine them. Do not complete this

section of your worksheet now. You will complete each blank, A through J, as
you work through the disk allocation tasks. (Refer to page 1-40.)

Installation and Initial Configuration 1-23

Mirroring Configuration Guidelines

1-24

Mirroring Configuration Guidelines

Mirroring is not required, but it is strongly recommended. Refer to page 4-14
for a complete discussion of mirroring and mirroring administration.

Mirroring is a strategy that pairs primary chunks of one defined blobspace or
dbspace with equal-sized mirror chunks. Writes to the primary chunk are
duplicated asynchronously on the mirror chunk.

Any database that has extreme requirements for reliability in the face of
hardware failure should be located in a mirrored dbspace. Above all, the root
dbspace should be mirrored.

The same OnLine database server on the same host machine must manage
both chunks of a mirrored set. Mirroring on disks managed over a network
is not supported. For a complete description of mirroring and how it works,
refer to page 4-14.

MIRROR

The MIRROR parameter is a flag that indicates whether mirroring is enabled
for OnLine. The default value of MIRROR is 0, indicating mirroring is
disabled. The alternative value of MIRROR is 1, indicating mirroring is
enabled.

Enable mirroring if you plan to create a mirror for the root dbspace as part of
initialization. Otherwise, leave mirroring disabled. If you later decide to add
mirroring, you can change the parameter value through DB-Monitor or by
editing your configuration file. (Refer to page 3-104.)

MIRRORPATH

The MIRRORPATH parameter specifies the full pathname of the chunk that
will serve as the mirror for the initial chunk of the root dbspace (ROOTPATH).

MIRRORPATH should be a link to the chunk pathname of the actual mirror
chunk for the same reasons that ROOTPATH is specified as a link. (Refer to
page 1-22.) Similarly, you should select a short pathname for the mirror
chunk. No default value is provided, but /dev/mirror_root is one suggestion
for a link pathname.

IBM Informix OnLine Database Server Administrator's Guide

Physical Log Configuration Guidelines

MIRROROFFSET

The MIRROROFFSET parameter specifies the offset into the disk partition or
into the device to reach the chunk that serves as the mirror for the root
dbspace initial chunk. Leave this worksheet field blank until you allocate
OnLine disk space.

Physical Log Configuration Guidelines
This section describes how to assign values to the physical log parameters.

The physical log is a block of contiguous disk space that serves as a storage
area for copies of unmodified disk pages. The physical log is a component of
OnLine fast recovery, a fault-tolerant feature that automatically recovers
OnLine data in the event of a system failure. Refer to page 4-39 for more
information about fast recovery. Refer to page 2-152 for detailed information
about the physical log.

PHYSDBS
PHYSDBS specifies the name of the dbspace that contains the physical log.

For the initial configuration, the physical log must be created in the initial
chunk of the root dbspace. For this reason, you do not specify PHYSDBS as
part of the configuration. Itis assigned by default to the value of ROOTNAME.

After additional dbspaces have been defined, you can move the physical log
to another dbspace to reduce disk contention.

PHYSFILE

PHYSFILE specifies the size of the physical log in kilobytes. A general
guideline for sizing your physical log is that the size of the physical log
should be about twice the size of one logical log file.

A more precise guideline is that total disk space allocated to the physical log
and the logical log files should equal about 20 percent of all dbspace
dedicated to OnLine. The ratio of logical log space to physical log space
should be about 3:1.

Installation and Initial Configuration 1-25

Logical Log Configuration Guidelines

1-26

Refer to page 1-42 for guidelines on deciding how much disk space should be
dedicated to OnLine dbspaces. Refer to page 1-26 for information about
sizing the logical log files.

The default value of PHYSDBS is 1,000 KB.

The default values included in the tbconfig.std file adhere to both of the
guidelines just described. The size of the physical log is 1,000 KB. The default
value of LOGSIZE is 500 KB. The default value of LOGFILES is 6. Thus, total
logical log size is 3,000 KB. Total space devoted to the physical and logical
logs is 4,000 KB. This value meets the first criterion of 20 percent of the root
dbspace, which is 20,000 KB. The strategy also meets the second recommen-
dation to allocate logging space in a ratio of 3:1, logical log space to physical
log space.

Logical Log Configuration Guidelines

This section describes how to assign initial configuration values to the logical log
parameters. Refer to page 3-14 for a detailed discussion of logical log configu-
ration guidelines. Refer to page 4-18 for an overview of the mechanics of OnLine
blobspace and dbspace logging.

OnLine supports transaction logging, which is the ability of the database
server to track and, if needed, to roll back all changes made to the database
during application transactions. OnLine transaction logging is implemented
by recording each change made to a database in disk space allocated for the
OnLine logical log files.

The logical log files contain a history of all database changes since the time of
the last archive. At any time, the combination of OnLine archive tapes plus
OnLine logical log files contain a complete copy of your OnLine data.

As OnLine administrator, you decide on the optimum total size of the logical
log: LOGFILES multiplied by LOGSIZE. The optimum size of the logical logs is
based on the length of individual transactions. (OnLine does not permit a
single transaction to span all logical log files.) Refer to page 2-156 for detailed
information on selecting values for LOGFILES and LOGSIZE that are specifi-
cally tuned to your application environment.

IBM Informix OnLine Database Server Administrator's Guide

Logical Log Configuration Guidelines

LOGFILES
LOGFILES specifies the number of logical log files managed by OnLine.

The minimum number required for OnLine operation is three log files. The
maximum number is determined by the number of logical log descriptors
that can fit on a page. For a 2-KB page, the maximum number is about 60 log
files. The default value of LOGFILES is 6.

Select the number of logical log files after you determine a general size for
total logical log size and you select a size for each logical log file.

LOGSIZE
LOGSIZE specifies the size of each logical log file managed by OnLine.

The minimum size for a single logical log file is 200 KB. The default value of
LOGSIZE is 500 KB.

A general guideline for sizing the individual logical log files is derived from
the guideline for all logging space: the total disk space allocated to the
physical log and the logical log files should equal about 20 percent of all
dbspace dedicated to OnLine. The ratio of logical log space to physical log
space should be about 3:1.

The default values included in the tbconfig.std file adhere to the guideline
just described. The default value of LOGSIZE is 500 KB. The default value of
LOGFILES is 6. Total logical log size is 3,000 KB. The size of the physical log is
1,000 KB. Total space devoted to the physical and logical logs is 4,000 KB. This
value meets the first criterion of 20 percent of the root dbspace, which is
20,000 KB. The strategy also meets the second recommendation to allocate
logging space in a ratio of 3:1, logical log space to physical log space.

Installation and Initial Configuration 1-27

Message File Guidelines

1-28

Message File Guidelines

The console receives messages that deserve your immediate attention—for
example, alerting you that your logical logs are full. The OnLine message log
contains a more complete set of messages that record OnLine activity but
rarely require immediate action.

MSGPATH

MSGPATH specifies the UNIX pathname of the OnLine message file. OnLine
writes status messages and diagnostic messages to this message file during
operation. The default value for MSGPATH is /usr/informix/online.log.

CONSOLE

CONSOLE specifies the pathname destination for console messages. The
default value for CONSOLE is /dev/console, which sends messages to the
system console screen.

Archive Tape Device Guidelines

This section describes how to assign initial configuration values to the
archive tape device parameters. Refer to page 3-50 for a detailed discussion
of archive tape configuration guidelines.

As OnLine administrator, you are responsible for creating and maintaining
archives. OnLine supports several different archiving strategies, including
online archiving, remote archiving, and incremental archiving.

Informix strongly recommends that your OnLine environment include two
tape devices, one for archiving and a second for backing up the logical log
files to tape. If you must use the same device for archiving and for backing
up the logical logs, plan your archive schedule carefully to eliminate
contention for the one tape device. Refer to page 3-49.

TAPEDEV

TAPEDEYV specifies the archive tape device. TAPEDEYV can be a link pathname
that points to the actual tape device to provide flexibility in case the actual
device is unavailable.

IBM Informix OnLine Database Server Administrator's Guide

Logical Log Tape Device Guidelines

The default value of TAPEDEV is /dev/tapedev.

You can set the value of TAPEDEV to /dev/null if you are testing or proto-
typing an application, or if you are using OnLine in a learning environment.
During OnLine operation, some tasks require that you create an archive. If
you set TAPEDEV to /dev/null, you can create an archive instantly, without
overhead. However, you are not archiving your OnLine data. You cannot
perform a restore.

You can set the value of TAPEDEV to specify a tape device on another host
machine and create archives across your network. For instructions on how to
do this, refer to page 3-54.

Tape devices that do not rewind automatically before opening and on closing
are considered incompatible with OnLine operation.

TAPEBLK

TAPEBLK specifies the block size of the archive tape device, in kilobytes.
Specify the largest block size permitted by your tape device. If the tape device
pathname is /dev/null, the block size is ignored. The default value of
TAPEBLK is 16KB.

TAPESIZE

TAPESIZE specifies the maximum amount of data that should be written to
each tape, expressed in kilobytes. If the tape device pathname is /dev/null,
the tape size is ignored. The default value of TAPESIZE is 10,240KB.

Logical Log Tape Device Guidelines

This section describes how to assign values to the logical log backup tape
device parameters. Refer to page 3-13 for a complete list of logical log admin-
istration topics related to logical log backups.

As OnLine administrator, you are responsible for the prompt back up of the
logical log files. The logical log backup tapes, along with the archive tapes,
constitute a complete copy of your OnLine data.

Installation and Initial Configuration 1-29

Logical Log Tape Device Guidelines

1-30

OnLine supports a logical log backup option called Continuous-Logging,
which backs up each logical log as soon as it becomes full. The Continuous-
Logging option is recommended for all OnLine configurations, but it requires
a dedicated tape device while the option is active.

Informix strongly recommends that your OnLine environment include two
tape devices, one for continuous backup of the logical logs and one for
archiving.

LTAPEDEV

LTAPEDEV specifies the logical log backup tape device. LTAPEDEYV can be a
link pathname that points to the actual tape device to provide flexibility in
case the actual device is unavailable.

The default value of LTAPEDEV is /dev/tapedev.

You can set the value of LTAPEDEYV to /dev/null if you are testing an appli-
cation or if you are using OnLine in a learning environment. The only
advantage of doing this is to eliminate the need for a tape device. However,
you cannot recover OnLine data beyond that which is stored as part of an
archive.

You can set the value of LTAPEDEYV to specify a tape device on another host
machine and perform logical log backups across your network. For instruc-
tions on how to do this, refer to page 3-19.

Tape devices that do not rewind automatically before opening and on closing
are considered incompatible with OnLine operation.

LTAPEBLK

LTAPEBLK specifies the block size of the logical log backup tape device, in
kilobytes. Specify the largest block size permitted by your tape device. If the
pathname of the tape device is /dev/null, the block size is ignored. The
default value of LTAPEBLK is 16KB.

IBM Informix OnLine Database Server Administrator's Guide

[dentification Parameter Guidelines

LTAPESIZE

LTAPESIZE specifies the maximum amount of data that should be written to
each tape, expressed in kilobytes. If the pathname of the tape device is
/dev/null, the tape size is ignored. The default value of LTAPESIZE is
10,240KB.

Identification Parameter Guidelines

This section describes how to assign values to the OnLine identification
parameters.

OnLine identification parameters are an issue if you are configuring more
than one OnLine database server for a single host machine or if you plan to
integrate this OnLine database server into a network of OnLine servers that
use the client/server capabilities of IBM Informix STAR.

In either case, the database server processes require a method to uniquely
identify their associated OnLine shared memory space within UNIX shared
memory. The identification key is linked to the value of the SERVERNUM
parameter.

For a complete discussion of configuration issues affected by multiple
residency, refer to page 9-7. For information about IBM Informix STAR config-
uration issues, refer to the IBM Informix NET and IBM Informix STAR Installation
and Configuration Guide. For more information about the IBM Informix STAR
configuration parameters in the tbconfig.std file, refer to page 9-57.

SERVERNUM

SERVERNUM specifies a unique identification number associated with this
specific occurrence of OnLine. The identifier distinguishes this OnLine server
from all other database servers in the $INFORMIXDIR directory and the
network, if one exists.

The default value of SERVERNUM is 0. The value cannot exceed 255.

If OnLine and earlier database servers co-exist on the same machine, they
must have unique values for SERVERNUM. The SERVERNUM value for earlier
servers is implicitly set to 0. Therefore, OnLine requires a value that is greater
than 0.

Installation and Initial Configuration 1-31

Shared-Memory Parameter Guidelines

1-32

DBSERVERNAME

DBSERVERNAME specifies a unique name associated with this specific occur-
rence of OnLine. The identifier distinguishes this OnLine server from all
other database servers in the $INFORMIXDIR directory and the network, if
one exists.

The value of DBSERVERNAME cannot exceed 18 characters. Valid characters
are restricted to digits, letters, and the underscore. The default value of
DBSERVERNAME is ONLINE.

Shared-Memory Parameter Guidelines

This section describes how to assign values to the OnLine shared-memory
parameters.

As part of the initialization procedure, DB-Monitor prompts you to enter the
values of all but eight of the shared-memory parameters listed in
tbconfig.std.

These eight parameters are used to tune performance. Default values are
used during initialization. Tuning is best done later, when you can monitor
and evaluate OnLine performance under typical working conditions. The
eight performance parameters do not appear on the configuration worksheet
but they are described in this section.

RESIDENT

The value of RESIDENT indicates whether OnLine shared memory remains
resident in UNIX physical memory. If your UNIX system supports forced
residency, you can specify that OnLine shared memory is not swapped to
disk.

The size of OnLine shared memory is a factor in your decision. Before you
decide on residency, verify that the amount of physical memory available
after satisfying OnLine requirements is sufficient to execute all required UNIX
and application processes.

The default value of RESIDENT in tbconfig.std is 0, indicating that residency
is not enforced. A value of 1 indicates that residency is enforced.

IBM Informix OnLine Database Server Administrator's Guide

Shared-Memory Parameter Guidelines

USERS

USERS specifies the maximum number of user processes that can concur-
rently attach to shared memory. The value can have a large effect on the size
of shared memory because it determines the minimum values for four other
shared-memory parameters (LOCKS, TBLSPACES, BUFFERS, and
TRANSACTIONS.)

To arrive at a value for USERS, specify the highest likely value for the number
of user processes active at any one time plus the value of CLEANERS, plus 4.
Add one more user process if you intend to implement mirroring.

The minimum value is equal to the value of CLEANERS plus 4, plus 1 if
mirroring is enabled. The maximum value is 1000. The default value is 20.

(The four required user processes are the master daemon, thinit; the under-
taker daemon, tbundo; the DB-Monitor process, tbmonitor; and one
additional user process to ensure a slot for an administrative process. If you
enable mirroring, an additional mirror daemon is needed.)

TRANSACTIONS

The value of TRANSACTIONS refers to the maximum number of concurrent
transactions supported by OnLine.

The minimum value of TRANSACTIONS is the value of USERS. The
maximum value is the number of transactions that can fit into a checkpoint
record, which for OnLine 5.x is 1,364.

By default, OnLine sets the value of TRANSACTIONS equal to the value of
USERS. DB-Monitor does not prompt for this value during initialization. The
default value is appropriate unless you plan to use OnLine in an X/Open
environment. If you are configuring OnLine for use with IBM Informix
TP/XA, refer to the IBM Informix TP/XA User Manual.

LOCKS

LOCKS specifies the maximum number of locks available to OnLine user
processes during processing. The number of locks has a relatively small effect
on the size of shared memory. The minimum value for LOCKS is equal to 20
locks per user process. The maximum value is 8 million. The default value is
2000.

Installation and Initial Configuration 1-33

Shared-Memory Parameter Guidelines

1-34

BUFFERS

BUFFERS specifies the maximum number of shared-memory buffers available
to OnLine user processes during processing.

The minimum value for BUFFERS is 4 per user process. The maximum value
is 32,000. The default value is 200.

As a general guideline, buffer space should range from 20 to 25 percent of
physical memory. Informix recommends that you initially set BUFFERS so
that buffer space (the value of BUFFERS multiplied by BUFFSIZE) is equal to
20 percent of physical memory. Then calculate all other shared-memory
parameters.

If you find that after you have configured all other parameters you can afford
to increase the size of shared memory, increase the value of BUFFERS until
buffer space reaches the recommended 25 percent upper limit.

TBLSPACES

TBLSPACES specifies the maximum number of active (open) tbispaces.
Temporary tables and system catalog tables are included in the active table
count.

The minimum value for TBLSPACES is 10 per user process. This minimum
must be greater than the maximum number of tables in any one database,
including the system catalog tables, plus 2. (This minimum is required to
permit OnLine to execute a DROP DATABASE statement.) The maximum
value is 32,000. The default value is 200. Consider the demands of your appli-
cation when you assign a value.

IBM Informix OnLine Database Server Administrator's Guide

Shared-Memory Parameter Guidelines

CHUNKS

CHUNKS specifies the maximum number of chunks supported by OnLine.
The value specified should be as close as possible to the maximum number
permitted, which is operating-system dependent.

The maximum number of chunks is the lesser of two values:

= The number of chunk entries (pathnames) that can fit on an OnLine
page

= The maximum number of open files per process allowed by the
operating system, minus 6

The default value for CHUNKS is 8. For specific instructions on how to
calculate the number of chunk entries that can fit on a page, refer to page 2-93.

DBSPACES

DBSPACES specifies the maximum number of dbspaces supported by
OnLine. The maximum number of dbspaces is equal to the value of CHUNKS,
since each dbspace requires at least one chunk. The minimum value is 1,
representing the root dbspace. The default value is 8.

PHYSBUFF

PHYSBUFF specifies the size in kilobytes of each of the two physical log
buffers in shared memory. Double buffering permits user processes to write
to the active physical log buffer while the other buffer is being flushed to the
physical log on disk.

The recommended value for PHYSBUFF is 16 pages, or 16 multiplied by
BUFFSIZE. (BUFFSIZE is the machine-specific page size and is the last
parameter listed in tbconfig.std.) The default value is 32KB.

LOGBUFF

LOGBUFF specifies the size in kilobytes of each of the three logical log buffers
in shared memory. Triple buffering permits user processes to write to the
active buffer while one of the other buffers is being flushed to disk. If flushing
is not complete by the time the active buffer fills, user processes begin writing
to the third buffer.

Installation and Initial Configuration 1-35

Shared-Memory Parameter Guidelines

1-36

The recommended value for LOGBUFF is 16 pages, or 16 multiplied by
BUFFSIZE. (BUFFSIZE is the machine-specific page size and the last parameter
listed in tbconfig.std.) The default value is 32KB.

LOGSMAX

LOGSMAX specifies the maximum number of logical log files that OnLine
supports. OnLine requires at least three logical log files for operation. In
general, you can set the value of LOGSMAX equal to the value of LOGFILES. If
you plan to relocate the logical log files out of the root dbspace after you
initialize OnLine, assign LOGSMAX the value of LOGFILES, plus 3. The reason
for this is explained on page 3-31, which describes how to move the logical
log files to another dbspace.

The default value of LOGSMAX is 6. The maximum number of logical log files
that you can display using DB-Monitor is 50. (You can display any number of
log files using the tbstat utility.)

CLEANERS

CLEANERS specifies the number of additional page-cleaner daemon
processes available during OnLine operation. (By default, one page-cleaner
process is always available.)

A general guideline is one page cleaner per physical device, up to a
maximum of eight. You might be able to tune the value to achieve an increase
in performance. Refer to page 5-19.

The maximum value for CLEANERS is 32. The minimum value is 0. The
default value is 1. (The value specified has no effect on the size of shared
memory.)

SHMBASE

SHMBASE specifies the base address where shared memory is attached to the
memory space of a user process. Do not change the value of SHMBASE. The
default value for SHMBASE is platform-dependent. DB-Monitor does not
prompt for this value during initialization. For more information about the
role of SHMBASE in initialization, refer to page 2-26.

IBM Informix OnLine Database Server Administrator's Guide

Shared-Memory Parameter Guidelines

CKPTINTVL

CKPTINTVL specifies the maximum interval, expressed in seconds, that can
elapse before OnLine checks to determine if a checkpoint is needed. The
default value for CKPTINTVL is 300 seconds, or five minutes.

DB-Monitor does not prompt for this value during initialization. You can tune
this parameter to affect performance. Refer to page 5-20.

LRUS

LRUS specifies the number of LRU (least recently used) queues in the shared-
memory buffer pool. The role of the LRU queues is described on page 2-58.

The default value for LRUS is the larger of USERS/2 or 8, where USERS is the
value of the configuration parameter. DB-Monitor does not prompt for this
value during initialization. You can tune this parameter to affect perfor-
mance. Refer to page 5-19.

LRU_MAX_DIRTY

LRU_MAX_DIRTY specifies the percentage of modified pages in the LRU
gueues that, when reached, flags the queue to be cleaned. The interaction
between the page-cleaner daemon processes and the LRU queues is described
on page 2-58.

The default value for LRU_MAX_DIRTY is 60 percent.

DB-Monitor does not prompt for this value during initialization. You can tune
this parameter to affect performance. Refer to page 5-19.

LRU_MIN_DIRTY

LRU_MIN_DIRTY specifies the percentage of modified pages in the LRU
gueues that, when reached, flags the page cleaners that cleaning is no longer
mandatory. Page cleaners might continue cleaning beyond this point under
some circumstances. The interaction between the page-cleaner daemon
processes and the LRU queues is described on page 2-58.

The default value for LRU_MAX_DIRTY is 50 percent.

Installation and Initial Configuration 1-37

Shared-Memory Parameter Guidelines

1-38

DB-Monitor does not prompt for this value during initialization. You can tune
this parameter to affect performance. Refer to page 5-19.

LTXHWM

LTXHWM specifies the “long transaction high-water mark.” In the logical log,
LTXHWM is the percentage of available logical log space that, when filled,
triggers the thinit daemon to check for long transactions. If a long transaction
is found, the transaction is aborted and the executing OnLine database server
process rolls back all modifications associated with this transaction.

The default value for LTXHWM is 50 percent. This means that up to 50 percent
of the available log space can be spanned by one user's transaction. When this
level is exceeded, the OnLine database server process is signalled to immedi-
ately roll back that transaction. The rollback procedure continues to generate
logical log records, however, so the logical log continues to fill. This is the
reason for the LTXEHWM parameter.

DB-Monitor does not prompt for this value during initialization. Refer to
page 2-159 for more information about LTXHWM.

LTXEHWM

LTXEHWM specifies the “long transaction, exclusive access, high-water
mark.” The LTXEHWM must be a higher percentage than the LTXHWM
percentage. If the logical logs fill to LTXEHWM, the long transaction currently
being rolled back (refer to LTXHWM) is given “exclusive” access to the logical
log. The term “exclusive” is not entirely accurate. Most OnLine activity is
suspended until the transaction has completed its rollback, but transactions
that are in the process of rolling back or committing retain access to the
logical log.

The default value for LTXEHWM is 60 percent.

DB-Monitor does not prompt for this value during initialization. Refer to
page 2-159 for more information about LTXEHWM.

IBM Informix OnLine Database Server Administrator's Guide

Machine- and Product-Specific Parameter Guidelines

Machine- and Product-Specific Parameter Guidelines

Because your machine or product environment might not support these
parameters, they do not appear on the configuration worksheet. DB-Monitor
does not prompt for any of these values during initialization.

DYNSHMSZ

The DYNSHMSZ parameter affects your OnLine configuration only if you
plan to use OnLine with the IBM Informix TP/XA library product. The default
value for DYNSHMSZ is 0. After you initialize OnLine, you can modify the
value as required by your environment. Refer to the IBM Informix TP/XA
product documentation for information about setting this parameter.

GTRID_CMP_SZ

The GTRID_CMP_SZ parameter affects your OnLine configuration only if you
are planning to use OnLine with the IBM Informix TP/XA library product.
The default value for GTRID_CMP_SZ is 32 bytes. After you initialize OnLine,
you can modify the value as required by your environment. Refer to the
IBM Informix TP/XA product documentation for information about setting
this parameter.

DEADLOCK_TIMEOUT

The DEADLOCK_TIMEOUT parameter affects your OnLine configuration only
if you are planning to use OnLine with IBM Informix STAR. Refer to page 9-57
for information about using OnLine in a client/server environment.

TXTIMEOUT

The TXTIMEOUT parameter affects your OnLine configuration only if you are
planning to use OnLine with IBM Informix STAR. Refer to page 9-57 for infor-
mation about using OnLine in a client/server environment.

Installation and Initial Configuration 1-39

OnLine Disk Space Allocation

1-40

SPINCNT

The SPINCNT parameter affects only multiprocessor machines that use spin-
and-retry latch acquisition. SPINCNT specifies the number of times that a
process attempts to acquire a latch in shared memory before it enters a wait
mode.

The default value of SPINCNT on a uniprocessor machine is 0. The default
value of SPINCNT on a multiprocessor machine is 300. Refer to page 5-24 for
information about tuning the value of this parameter.

OnLine Disk Space Allocation

This section explains how to allocate disk space for OnLine. The disk space
allocation task can be divided into four smaller tasks:
= Decide whether to dedicate raw disk space or cooked files to OnLine
s Determine how much disk space to dedicate to OnLine
= Decide how to apportion the disk space (disk layout)
= Allocate the disk space

Allocate Raw Disk Space or Cooked Files?

This section describes the advantages and trade-offs between either
allocating raw disk space managed by OnLine or storing OnLine data in
cooked file space. As a general guideline, you experience greater perfor-
mance and increased reliability if you allocate raw disk space.

Each chunk (unit of disk space) that is dedicated to OnLine can be either one
of the following:

Raw disk space 170 is managed by OnLine.
Cooked file The file contents are managed by OnLine, but the 170
is managed by the UNIX operating system.

Cooked files are easier to allocate than raw disk space. However, you sacrifice
reliability and experience lower performance if you store OnLine data in
cooked files.

IBM Informix OnLine Database Server Administrator's Guide

OnLine Disk Space Allocation

Cooked files are unreliable because 170 on a cooked file is managed by the
UNIX operating system. A write to a cooked file can result in data being
written to a memory buffer in the UNIX file manager instead of being written
immediately to disk. As a consequence, UNIX cannot guarantee that the
committed data has actually reached the disk. This is the problem. OnLine
recovery depends on the guarantee that data written to disk is actually on
disk. If, in the event of system failure, the data is not present on disk, the
OnLine automatic recovery mechanism could be unable to properly recover
the data. (The data in the UNIX buffer could be lost completely.) The end
result could be inconsistent data.

Performance degrades if you give up the efficiency benefits of OnLine-
managed 1/0. If you must use cooked UNIX files, try to store the least
frequently accessed data in the cooked files. Try to store the files in a file
system that is located near the center cylinders of the disk device, or in a file
system with minimal activity. In a learning environment, where reliability
and performance are not critical concerns, cooked files are acceptable. (Since
OnLine manages the internal arrangement of data, you cannot edit the
contents of a cooked file.)

Significant performance advantages and increased data reliability are
ensured when OnLine performs its own disk management on raw disk space.

Raw disk space appears to your UNIX operating system as a disk device or
part of a disk device. In most operating systems, the device is associated with
both a block-special file and a character-special file in the /dev directory.

When you link your raw disk space to an OnLine chunk pathname, verify
that you use the character-special file for the chunk name, not the block-special
file. (The character-special file can directly transfer data between the address
space of a user process and the disk using direct memory access (DMA),
which results in orders-of-magnitude better performance.)

How Much Disk Space Do You Need?

This section applies only if you are configuring OnLine for a production
environment. The first step in answering the question “How much space?” is
to calculate the size requirements of the root dbspace. The second step is to
estimate the total amount of disk space to allocate to all OnLine databases,
including space for overhead and growth.

Installation and Initial Configuration 1-41

OnLine Disk Space Allocation

1-42

Calculate Root dbspace Size

Analyze your application to estimate the amount of disk space that OnLine
might require for implicit temporary tables, which are tables OnLine creates
as part of processing. Implicit temporary tables are stored in the root dbspace
and deleted when the database server process ends.

The following types of statements require temporary tblspace:

= Statements that include a GROUP BY clause
= Statements that include subqueries

= Statements that use distinct aggregates

m Statements that use auto-index joins

Try to estimate how many of these statements will run concurrently. Estimate
the size of these temporary tblspaces by estimating the number of values
returned.

Enter this value in the field labeled E under ROOTSIZE on the configuration
worksheet (page 1-21).

Next, decide if users will store databases or tables in the root dbspace. One
advantage to root dbspace storage is that the dbspace is usually mirrored. If
root dbspace is the only dbspace you intend to mirror, place all critical data
there for protection. Otherwise, store databases and tables in another
dbspace.

Estimate the amount of disk space, if any, that you will allocate for root
dbspace tables. Enter this value in the field labeled F under ROOTSIZE on the
worksheet (page 1-21).

Now calculate the size of the root dbspace, using the fields A through J that
appear on the first page of the configuration worksheet.

The amount of disk space required for OnLine control information is 3
percent of the size of the root dbspace, plus 14 pages, expressed as kilobytes
(or 14 x BUFFSIZE).

Complete the worksheet calculations to arrive at the size of the initial chunk
for the root dbspace. Enter this value in two places on the configuration
worksheet. First, enter it as the size of the root dbspace in the ROOTSIZE field.
Second, enter it into the field labeled Size of the root dbspace, on the second
page, under the heading Disk Layout.

IBM Informix OnLine Database Server Administrator's Guide

OnLine Disk Space Allocation

Project Total Space Requirements

The amount of additional disk space needed for OnLine data storage

depends on your production environment. Every application environment is
different. The following list suggests some of the steps you might take to help
you calculate the amount of disk space to allocate (beyond the root dbspace):

1. Decide how many databases and tables you need to store. Calculate
the amount of space required for each one.

2. Calculate a growth rate for each table and assign some amount of
disk space to each table to accommodate growth.

3. Decide which databases and/or tables you want to mirror.

Refer to IBM Informix Guide to SQL: Tutorial for instructions about calculating
the size of your data bases.

After you arrive at a value, enter it on the second page of the configuration
worksheet, in the field labeled Additional disk space for OnLine chunks.

How Should You Apportion Disk Space?

When you allocate disk space (raw disk or cooked files), you allocate it in
units called chunks. A dbspace or a blobspace is associated with one or more
chunks. You must allocate at least one chunk for the root dbspace.

(Refer to page 2-81 for a discussion of the relationships among chunks,
dbspaces, blobspaces, databases, and tblspaces.)

Informix recommends that you format your disk(s) so that each chunk is
associated with its own UNIX disk partition. When every chunk is defined as
a separate partition (or device), you will find it is easy to track disk space
usage. You avoid errors caused by miscalculated offsets.

If you are working with a disk that is already partitioned, you might be
required to use offsets to define a chunk.

Installation and Initial Configuration 1-43

OnLine Disk Space Allocation

1-44

After you decide how you plan to define the chunks, decide on the number
of chunks you plan to create and a size for each. The size of a chunk is mostly
determined by storage considerations:

= With which blobspace or dbspace is this chunk associated?

= Which databases, tables, or blob columns are stored in this blobspace
or dbspace?

= How many chunks (of what size) compose the dbspace or blobspace?

Issues of disk contention and mirroring should also influence your decisions
regarding the size of the chunks:

= Where should high-use tables be located to reduce contention?

= Where should the mirror chunks for each primary chunk be located
to maximize fault tolerance?

Space Allocation in a Learning Environment

If you are configuring OnLine for a learning environment, allocate a single
chunk for the root dbspace. Allocate a second chunk on a different device if
you plan to mirror the root dbspace. Ideally, different controllers should
manage the devices. The mirror chunk should be the size of the root dbspace,
specified as ROOTSIZE.

Space Allocation in a Production Environment

The configuration worksheet provides space for you to record your decisions
regarding each chunk: its size, linked pathname, actual pathname, and
associated dbspace or blobspace. Refer to ROOTPATH and MIRRORPATH for
the linked pathnames for the root dbspace chunk and the mirror root chunk,
respectively. Guidelines for making these decisions follow.

In a production environment, your goal is to minimize hardware disk
contention; that is, to limit the amount of disk head movement across a disk
and reduce the number of times processes compete for access to the same
disk.

IBM Informix OnLine Database Server Administrator's Guide

OnLine Disk Space Allocation

Figure 1-2 illustrates four guidelines for planning the physical layout of your
OnLine data. Each guideline is described in detail in the text that follows.

Figure 1-2
Guidelines for planning your disk layout

Consider mirroring

Locate a primary chunk and its mirror chunk on different disks.

primary mirror

Isolate high-use tables

disk platter
high-use table Locate high-use tables on their own device at the center of the disk
or spread them across multiple devices.

Consider rapidly growing tables

table 1 extents Avoid dbspace fragmentation caused by improperly sized extents.
table 2 extents

table 3 extents

BN |

Plan for the final location of the physical and logical logs

Separate the logs and locate them on disks not shared by active tables.

logical log physical log

Installation and Initial Configuration 1-45

OnLine Disk Space Allocation

1-46

Critical tables and databases should be mirrored. The root dbspace should be
mirrored. Mirroring is specified by chunk. Locate the primary and the
mirrored chunk on different disks. Ideally, different controllers should
handle the disks.

You can place a table with high 170 activity on a disk device that is dedicated
to its use. When disk drives have different performance levels, you can put
the tables with the most use on the fastest drives. Separate disk devices
reduce competition for disk access when joins are formed between two high-
demand tables.

To reduce contention between programs using the same table, you can
attempt to spread the table across multiple devices. To do this, locate a
tbilspace in a dbspace that includes multiple chunks, each of which are
located on different disks. Although you have no control over how the table
data is spread across the chunks, this layout might result in multiple disk
access arms for one table.

To minimize disk head movement, place the most frequently accessed data
as close to the middle partitions of the disk as possible. (When a disk device
is partitioned, the innermost partitions have cylinder numbers that are
nearest the middle of the range of cylinder numbers and generally experience
the fastest access time.) Place the least frequently used data on the outermost
partitions. This overall strategy minimizes disk head movement.

When two or more large, growing tables share a dbspace, their new extents
can be interleaved. This interleaving creates gaps between the extents of any
one table. Performance might suffer if disk seeks must span more than one
extent. Work with the table owners to optimize the table extent sizes, or
consider placing the tables in separate dbspaces.

Both the logical log files and the physical log are extremely active and should
be given priority in disk placement. Both should be on the fastest devices and
on the most central disk cylinders.

The initial configuration automatically places the physical and logical logs in
the initial chunk of the root dbspace. Since the root dbspace also is extremely
active, you can place the root dbspace on the most central disk cylinder and
create other dbspaces for user database tables. Another strategy is to improve
performance by physically separating the logs and placing them in separate
dbspaces on disk devices that are not shared by active tables. For instructions
on how to change the location of the logical and physical log after initial-
ization, refer to page 3-31 and page 3-107, respectively.

IBM Informix OnLine Database Server Administrator's Guide

OnLine Disk Space Allocation

The logs contain critical information and should be located in mirrored
dbspaces, despite the fact that their high level of activity makes it costly (in
terms of performance) to do so.

Compare the total amount of dbspace disk space (exclude blobspaces) that
you intend to allocate to OnLine with the amount of space dedicated to
OnLine logging (physical log size plus total space allocated for the logical log
files). Ideally, logging space should be about 20 percent of total dbspace.
Adjust your worksheet values, if necessary.

(You should have values entered for all parameters on the worksheet except
for ROOTOFFSET and MIRROROFFSET. Guidelines for these parameters are
described as part of the next topic.)

How to Allocate Disk Space

This section provides instructions for allocating raw disk space or cooked
files.

Cooked File Space

To allocate cooked file space, concatenate null to a pathname that represents
one chunk of cooked file space. The cooked disk space file should have
permissions set to 660 (rw-rw----). Group and owner must be set to informix.

becone root

su root

passwor d:

create file for the cooked device
cat /dev/null > chunk_pat hname

establish correct ownership

chown i nform x chunk_pat hnanme

chgrp inform x chunk_pat hnanme

chmod 660 chunk_pat hnane

exit

If you are planning to locate your root dbspace in a cooked file, verify that the
pathname for the cooked file is the value of ROOTPATH on your configuration
worksheet.

Installation and Initial Configuration 1-47

OnLine Disk Space Allocation

1-48

Raw File Space

Consult your UNIX system manuals for instructions on how to create and
install a raw device.

In general, you can either repartition your disks or unmount an existing file
system. In either case, take proper precautions to back up any files before you
unmount the device.

Change the group and owner of the character-special devices to informix.
(The filename of the character-special device usually begins with the letter r
(for example, /dev/rsd1f).

Verify that the UNIX permissions on the character-special devices are 660.
Usually, the character-special designation and device permissions appear as
crw-rw---- if you execute the UNIX Is -l command on the filename. (Some
UNIX systems vary.)

Many UNIX systems keep partition information for a physical disk drive on
the drive itself in a volume table of contents (VTOC). The VTOC is commonly
stored on the first track of the drive. A table of alternate sectors (and bad-
sector mappings) can also be stored on the first track.

If you plan to allocate partitions at the start of a disk, use offsets to prevent
OnLine from overwriting critical information required by UNIX. Specify an
offset for the root dbspace or its mirror with the ROOTOFFSET and
MIRROROFFSET parameters, respectively.

Create a link between the character-special device name and another
filename with the UNIX link command, usually In.

Do not mount the character-special device. Do not create file systems on the
character-special devices.

Execute the UNIX command Is -lg on your device directory to verify that both
the devices and the links exist. An example output follows, although your
UNIX system display might differ slightly:

crwrw--- 1 informx Mar 7 14:30 /dev/rxy0Oh
crwrw--- 1 informx Mar 7 14:30 /dev/rxyOa
Irwxrwxrwx 1 informx Mar 7 15:15 /dev/ ny_root @ >/ dev/rxy0Oh
lrwxrwxrwx 1 informx Mar 7 15:15 /dev/raw dev2@ >/ dev/rxyOa

IBM Informix OnLine Database Server Administrator's Guide

OnLine Disk Space Allocation

Evaluate UNIX Kernel Parameters

Your OnLine product arrives with a machine-specific file, $INFOR-
MIXDIR/release/ONLINE_5.x, that contains recommended values for UNIX
kernel parameters. Compare the values in this file with your current UNIX
configuration.

If the recommended values for OnLine differ significantly from your current
environment, consider modifying your UNIX kernel settings.

Background information that describes the role of the UNIX kernel param-
eters in OnLine operation is provided on page 2-18.

Installation and Initial Configuration 1-49

Configuration Checklist

Configuration Checklist

Figure 1-3 is a checklist to help you verify that you have correctly completed
the initialization preparation tasks.

Figure 1-3

[Create user and group informix Checklist to
The only member of the group informix is user informix. Perform OnLine verify that the
administrative actions as user informix. preparation
tasks for OnLine

O Create raw devices initialization
Do not mount raw devices. Raw devices should not include file systems. have been
completed

[] Set device permissions correctly

Each raw device should display informix as its group and owner. Permissions
on each raw device are set to 660 (crw-rw----).

[Verify UNIX kernel parameters

The recommendations for UNIX kernel parameters included in the machine-
specific ONLINE_5.x file are compatible with your current UNIX kernel
parameters.

O Verify chunk offsets, if needed

If your system uses track O for control information and if the root dbspace or its
mirror is at the start of a partition, check that you included an offset into the
device.

O Verify size of root dbspace
Check that the initial chunk of the root dbspace is large enough to contain the
physical log, all logical logs, and OnLine overhead requirements.

O Verify OnLine shared-memory size
Check that the size you selected for OnLine shared memory fits within the amount
of shared memory available on your UNIX machine.

1-50 IBM Informix OnLine Database Server Administrator's Guide

Enter Your Configuration and Initialize OnLine

Enter Your Configuration and Initialize OnLine

When you configure OnLine for the first time, you specify two sets of
parameter values through DB-Monitor. The first set of parameters is the disk
parameters; the second set is the shared memory parameters. Each set of
values is specified on its own DB-Monitor screen. After you complete both
screens, OnLine prompts you to begin the initialization.

Verify that you are logged into your UNIX system as user informix and that
your path includes $INFORMIXDIR/bin. To access DB-Monitor, enter the
following command at the UNIX prompt:

t bnoni t or

The main DB-Monitor menu appears, as follows;

| NFORM X- OnLi ne: Status <Paraneters> Dbspaces Mde Force-Ckpt
Set configuration paraneters.

From the main menu, select the Parameters option. From the Parameters
menu options, select Initialize.

Installation and Initial Configuration 1-51

Enter Your Configuration and Initialize OnLine

The disk parameters initialization screen appears. Some fields contain
default values. The following screen representation replaces the default
values in each field with the name of the OnLine configuration parameter
associated with that field:

I NI TI ALl ZATI ON: Make desired changes and press ESCto record changes.
Press Interrupt to abort changes. Press F2 or CTRL-F for field-Ievel
hel p.

DI SK PARAMETERS
Page Size [BUFFSI ZE] Kbytes Mrror [MRROR]

Sys. Log File [MBGPATH |
System Msgs. [CONSOLE 1

Tape Dev. [TAPEDEV
Bl ock Size [TAPEBLK] Kbytes Total Tape Size [TAPESI ZE

]
]
Log Tape Dev. [LTAPEDEV]
Bl ock Size [LTAPEBLK] Kbytes Total Tape Size [LTAPESIZE]

Root Name [ROOTNAVE] Root Size [ROOTSI ZE]

Primary Path [ROOTPATH]
Of f set [ROOTOFFSET]

Mrror Path [M RRORPATH]
O f set [M RROROFFSET]

Phy. Log Size [PHYSFILE] Kbytes Log. Log Size [LOGSIZE]
Nunber of Logical Logs [LOGFILES]

To initialize OnLine, enter the values for the disk parameters and use your
worksheet as reference.

As you enter values, the last line in the screen changes dynamically,
depending on your cursor location. The last line always contains a brief
explanation of the value you should enter in the current field. If you press F2
or CTRL-F, additional help messages appear that pertain to the field where
your cursor is located.

Atany time during the initial configuration setup, you can press the Interrupt
key to abort your changes and return to the Parameters menu options.

After you complete this disk parameters screen, press ESC to record the
values entered. Automatically, the shared-memory parameters screen
appears.

1-52 IBM Informix OnLine Database Server Administrator's Guide

Setting Shared Memory Parameters

Setting Shared Memory Parameters

Like the disk parameters screen, the shared-memory parameters screen
appears with some default values in some fields. In the following represen-
tation of the shared-memory parameters screen, each default value has been
replaced with the name of the OnLine configuration parameter associated
with that field:

SHARED MEMORY: Make desired changes and press ESC to record changes.
Press Interrupt to abort changes. Press F2 or CTRL-F for field-Ievel help.
SHARED MEMORY PARAMETERS

Page Size [BUFFSI ZE] Kbytes

Server Number [SERVERNUM Server Name [DBSERVERNAME]
Deadl ock Timeout [DEADLOCK TI MEQUT] Seconds

Forced Residency [RESI DENT

Nunmber of Page Cl eaners [CLEANERS

Physi cal Log Buffer Size [PHYSBUFF Kbyt es
Logi cal Log Buffer Size [Kbyt es

of Logical Logs

of Users

of Locks

of Buffers [BUFFERS

of Chunks [CHUNKS

of Open Thl spaces [TBLSPACES

of Dbspaces DBSPACES

menory size Kbyt es

Enter the values for each parameter. After you verify that the values are
correct, press ESC to indicate that you wish to record your changes. OnLine
prompts a verification:

Do you want to keep these changes to the paraneters (y/n)?

If you enter n for no, DB-Monitor returns to the Parameters menu. You can
begin again if you wish.

If you enter y for yes, OnLine stores the configuration parameter values in the
current configuration file, if one exists. If no configuration file exists, OnLine
creates a configuration file for you. The file OnLine creates is placed in the
SINFORMIXDIR/etc directory. The configuration file is named according to
the value specified by TBCONFIG, if it is set. If TBCONFIG is not set, the file is
named tbconfig by default.

Installation and Initial Configuration 1-53

Initialize OnLine

Initialize OnLine

OnLine prompts you for confirmation that you wish to initialize immediately
using these current values:

Do you really want to continue? (y/n)
WARNI NG The root dbspace will be initialized.
Al previous data will be destroyed.

When you initialize OnLine starting from the DB-Monitor Initialize option
(disk parameters screen), you are initializing both disk space and shared
memory. When you initialize disk space, you automatically re-create a new
OnLine database server and destroy all existing data in that space.

Enter y to direct the tbinit process to initialize both OnLine disk space and
shared memory.

If you enter n, the changed parameter values are retained in the configuration
file and DB-Monitor returns to the Parameters menu.

If you receive any error messages as OnLine attempts to initialize, turn now
to page 1-60. Otherwise, OnLine displays messages as the initialization
proceeds. When initialization is complete, OnLine is in quiescent mode.

After OnLineisinitialized, continue with the remaining tasks to prepare your
system to receive data:

= Set your environment variables
= Modify UNIX startup and shutdown scripts, if desired
= Create blobspaces and additional dbspaces, if desired

Set Your Environment Variables

You already set the INFORMIXDIR and PATH environment variables before
you loaded the software. This section instructs you in setting two additional
environment variables:

SQLEXEC The pathname of the database server

TBCONFIG The OnLine configuration file

1-54 IBM Informix OnLine Database Server Administrator's Guide

Set Your Environment Variables

SQLEXEC

The value of SQLEXEC directs the front-end processes to a specific database
server within the $INFORMIXDIR directory. The default value for SQLEXEC is
SINFORMIXDIR/lib/sqlturbo, the OnLine database server. If OnLine is the
only database server in your SINFORMIXDIR directory, you do not need to
define SQLEXEC.

If you worked with an IBM Informix SE database server on this machine in the
past, you might have an SQLEXEC environment variable already set for use

with SE. If you are not planning to maintain the SE database server but intend
to run only OnLine on this machine, you might need to modify SQLEXEC to
ensure that it now reflects the OnLine database server.

If you intend to maintain both an SE database server and an OnLine database
server on the same machine, ensure that all users have their SQLEXEC
variable properly set. (The pathname of the SE database server is
SINFORMIXDIR/lib/sqglexec.)

Set the SQLEXEC environment variable as follows:

C shell: setenv SQLEXEC sql exec_val ue

Bourne shell: SQLEXEC=sql exec_val ue
export SQLEXEC

TBCONFIG

The TBCONFIG environment variable performs two tasks:

= Directs the tbinit process to the OnLine configuration file that is to
be read for initialization values

= Directs the OnLine server process (sqlturbo) to the correct OnLine
shared-memory space

The TBCONFIG value is not a full pathname; therefore, all OnLine configu-
ration files must reside in the directory $INFORMIXDIR/etc.

Installation and Initial Configuration 1-55

Modify UNIX Startup and Shutdown Scripts

1-56

If your environment contains a single OnLine database server, you do not
need to explicitly set TBCONFIG. If the tbinit process cannot find the file
specified by TBCONFIG, it creates a copy of tbconfig.std, places the copy in
the file specified by TBCONFIG, and uses the values in that file for
initialization.

You must set TBCONFIG if you changed the name of your configuration file
to something other than tbconfig, or if your environment supports two or
more OnLine database servers on the same machine. In the latter case, each
OnLine server requires a separate, unique configuration file that is stored in
SINFORMIXDIR/etc. (Refer also to the discussion of multiple residency on
page 9-7.)

Since each OnLine configuration file requires a unique value for
SERVERNUM, you might prefer to name each file so that it can easily be
related to a specific value. For example, the file tbconfig3 could indicate that
this configuration file specifies the unique SERVERNUM of 3.

Set the TBCONFIG environment variable as follows:
C shell: setenv TBCONFI G config_fil enane

Bourne shell: TBCONFI G=config_fil enanme
export TBCONFI G

Modify UNIX Startup and Shutdown Scripts

You can modify your UNIX startup file to initialize OnLine automatically
when your machine enters multiuser mode. You can also modify your UNIX
shutdown file to shut down OnLine in a controlled manner whenever UNIX
shuts down.

IBM Informix OnLine Database Server Administrator's Guide

Modify UNIX Startup and Shutdown Scripts

Startup

Add UNIX and OnLine utility commands to the UNIX startup script that
perform the following steps:

1. Set the INFORMIXDIR environment variable to the full pathname of
the directory in which OnLine is installed. (If multiple versions of
OnLine are running on your UNIX system, you must reset INFOR-
MIXDIR for each OnLine system that you initialize.)

2. Set the PATH environment variable to include the $INFOR-
MIXDIR/bin directory.

3. Setthe TBCONFIG environment variable to the desired configuration
file.

4. Execute tbinit, which starts OnLine and leaves it in online mode.
Examples of these commands for the C shell and Bourne shell follow:

C shell: setenv | NFORM XDl R/di r ect ory_name
set env PATH $PATH: $| NFORM XDl R/ bi n
setenv TBCONFI G config_fil enane
tbinit

Bourne shell: | NFORM XDI R= /di rect ory_nane
export | NFORM XDl R
PATH=$PATH: $1 NFORM XDI R/ bi n
export PATH
TBCONFI G=confi g_fil enanme
export TBCONFI G
tbinit

Installation and Initial Configuration 1-57

Modify UNIX Startup and Shutdown Scripts

Shutdown

Add UNIX and OnLine utility commands to the UNIX shutdown script that
perform the following steps:

1. Set the INFORMIXDIR environment variable to the full pathname of
the directory in which OnLine is installed. (If multiple versions of
OnLine are running on your UNIX system, you must reset INFOR-
MIXDIR for each OnLine system that you shut down.)

2. Set the PATH environment variable to include the $INFOR-
MIXDIR/bin directory.

3. Setthe TBCONFIG environment variable to the desired configuration
file.

4. Execute tbmode -ky, which initiates immediate shutdown and takes
OnLine offline.

These commands should execute after all user and database server processes
have finished working.

Examples of these commands for the C shell and Bourne shell follow:

C shell: setenv | NFORM XDI R /di rect ory_name
set env PATH $PATH: $I NFORM XDI R/ bi n
setenv TBCONFI G config_fil enane
t brode - ky

Bourne shell: | NFORM XDI R= /di rect ory_nanme
export | NFORM XDl R
PATH=$PATH: $1 NFORM XDI R/ bi n
export PATH
TBCONFI G=confi g_fil enane
export TBCONFI G
t bnode - ky

1-58 IBM Informix OnLine Database Server Administrator's Guide

Create Blobspaces and Dbspaces

Create Blobspaces and Dbspaces

After OnLine is initialized, you can create blobspaces and dbspaces as
desired. If you plan to use blobspaces, Informix recommends that you create
one or two blobspaces before you create a dbspace. The reason for this is the
way that OnLine archives data. During an archive, OnLine temporarily
blocks blobpage allocation in a chunk until the chunk is archived. Since
chunks are archived in order, it is to your advantage to create a blobspace
early to ensure that the chunks in the blobspace receive low chunk ID
numbers. This guarantees that the chunk is archived early in the process and
available to receive blobs for the duration of the online archive. Refer to
page 4-35 for more information about what happens during an online
archive.

For more information about how to create a blobspace, refer to page 3-88.

For more information about how to create a dbspace, refer to page 3-97.

Errors During Initialization

Figure 1-3 on page 1-51 contains a list of preparatory tasks that must be
performed properly for initialization. If any of these actions are omitted or
performed incorrectly, errors can result.

If you receive an error during initialization, verify that you performed these
tasks properly. If the list does not identify the error, use the following infor-
mation to help you interpret the error message. The source of an initialization
error message could be either OnLine or your UNIX operating system.

Installation and Initial Configuration 1-59

OnLine Error Message Format

1-60

OnLine Error Message Format

The OnLine error message format is straightforward:
-nn Expl anatory statenent of error condition

OnLine messages begin with a number that identifies the category of error.
Explanatory text follows. Use the error message number as a key into the
Informix Error Messages manual. The manual lists all Informix error messages
(not just OnLine messages), along with information about the cause of the
error and corrective actions available to you. An example of an OnLine error
message follows:

-146 |1SAMerror: The other copy of this disk
is currently disabled or non-existent.

UNIX Error Message Format

UNIX operating-system error messages are passed on to you by OnLine. Most
initialization errors generated by UNIX refer to shared-memory resource
deficiencies. These messages are returned to the OnLine initialization process
tbinit. For this reason, tbinit often appears first in the error message text.

The tbinit process name is typically followed by three items of information
generated by UNIX. The specifics of the messages vary, depending both on
the error and on your machine platform. In general, the message conforms to
the following format:

tbinit: UNIl X _cal | [menoni c] [associ at ed_val ues]

Your UNIX documentation contains precise information about the cause of
any UNIX errors and detailed information about corrective actions.

Usually, UNIX system call errors indicate a deficiency in a shared-memory
resource when OnLine is attempting to create its own shared memory. The
information on page 2-18 describes how OnLine uses the UNIX kernel param-
eters in shared-memory creation. You might be able to diagnose the problem
and identify the appropriate corrective action from this information.

IBM Informix OnLine Database Server Administrator's Guide

System Architecture

InThisChapter 2-7
Initialization . . . Ce e 2-7
Initialization Commands Ce e 2-8
Shared Memory Commands 2-9
Disk Space Commands. 210
What Happens During Shared- Memory Inltlallzatlon 210
Shared-Memory Initialization Procedure. 211
Step 1: Calculate Configuration Values 21
Step 2: Create Shared Memory 212
Step 3: Attach to Shared Memory 212
Step 4: Initialize Shared Memory Structure G e e e e 212
Step 5: Wake Parent Process 2-13
Steps 6 and 7: Initiate Fast Recovery and Flrst Checkpomt .. 2-13
Step 8: Drop Temporary Tables (Optional) 2-13
Step 9: Document Configuration Changes 2-14
Step 10: Check for Forced Residency 214
Step 11: Begin Looping as Master Daemon 214
What Happens During Disk-Space Initialization 2-14
Step 1: Calculate Configuration Values 2-15
Step 2: Create OnLine Shared Memory 2-16
Step 3: Attach to Shared Memory 2-16
Step 4: Initialize Shared-Memory Structures 2-16
Step 5: Initialize Disk Space 216
Step 6: Wake Parent tbinitProcess 217
Step 7: Initiate First Checkpoint. 217
Step 8: Change to Quiescent Mode. 2-18
Step 9: Set Forced Residency 2-18
Step 10: Loop as Master Daemon 2-18

UNIX Kernel and Semaphore-Allocation Parameters. 2-18

OnLine User Processes.

How User Processes Attach to Shared Memory

Step 1: Obtain SERVERNUM .

Step 2: Calculate Shared-Memory Key Value
Steps 3 and 4: Request Shared-Memory Segment and

Attach to SHMBASE .
Step 5: Attach Additional Segments
User Processes and Critical Sections.

OnLine User Process Status and States .
OnLine Database Server Process .
Orphaned Database Server Processes

OnLine Daemon Processes
thinit Daemon
tbundo Daemon
tbpgcl Daemon .

Shared Memory and Process Communication.
Shared Memory and Buffer Locks
Buffer Share Lock.
Buffer Update Lock .
Buffer Exclusive Lock .
Managing Shared-Memory Resources .
Shared-Memory Latches
OnLine Timestamps .

Hash Tables and the Hashing Technlque .

Shared-Memory Header .

Shared-Memory Internal Tables .
OnLine Buffer Table .
OnLine Chunk Table. .
OnLine Dbspace Table .
OnLine Latch Table .
OnLine Lock Table
OnLine Page-Cleaner Table
OnLine Thlspace Table .
OnLine Transaction Table .
OnLine User Table . .

Shared-Memory Buffer Pool
Regular Buffers
Big Buffers .

OnLine LRU Queues .

2-2 IBM Informix OnLine Database Server Administrator's Guide

2-22
2-24
2-24
2-25

2-25
2-27
2-28
2-29
2-30
2-31

2-33
2-33
2-34
2-34

2-36
2-38
2-38
2-38
2-39
2-39
2-41
2-44
2-46
2-47
2-48
2-48
2-49
2-50
2-51
2-51
2-52
2-52
2-54
2-54
2-55
2-56
2-56
2-57

LRU Queues and Buffer Pool Management.
LRU_MAX_DIRTY .
LRU_MIN_DIRTY .

How a User Process Acquires a Buffer
Step 1: Identify the Data . .
Step 2: Determine Lock-Access Level
Step 3: Locate the Page in Memory
Step 4: Read the Page in from Disk

Steps 5-7: Lock Buffer, Release Lock, and Wake

Waiting Processes
Physical Log Buffer .

Double Buffering
Causes of Flushing .
Flushing a Full Buffer .
Logical Log Buffer
Triple Buffering .
Buffer Contents .
Causes of Flushing .
Flushing a Full Buffer .
OnLine Checkpoints

Main Events During a Checkpomt

Initiating a Checkpoint

Fast Recovery. .

Archive Checkpoints .
What Happens During a Checkpomt
When the Daemons Flush the Buffer Pool
How OnLine Synchronizes Buffer Flushing.
Write Types Describe Flushing Activity .

Sorted Write .

Idle Write .

Foreground Write .

LRU Write .

Chunk Write .

Big-Buffer Write .
Writing Data to a Blobspace .

Disk Data Structures .

OnLine Disk Space Terms and Deflnltlons .
Chunk .
Page .
Blobpage

. 2-58
. 2-59
. 2-59
. 2-60
. 2-61
. 2-61
. 2-61
. 2-62

. 2-62
. 2-63
. 2-64
. 2-64
. 2-65
. 2-66
. 2-66
. 2-68
. 2-68
. 2-69
. 2-70
. 2-70
. 2-70
. 2-71
. 2-71
. 2-72
. 2-73
. 2-74
. 2-75
. 2-76
. 2-76
. 2-77
. 2-77
. 2-77
. 2-78
. 2-78

. 2-81
. 2-81
. 2-82
. 2-82
. 2-84

System Architecture

2-3

Dbspace and Blobspace. 284

Database. 28
Thlspace. 285
Extent. 285
PhysicalLog 2-86
Logical Log . . . Ce e ... 2-86
Structure of the Root Dbspace C e e 28T
Structure of a Regular Dbspace . . . Ce e e ... 2-89
Structure of an Additional Dbspace Chunk -2 (0]
Structure of a Blobspace o s .2
Structure of a Blobspace or Dbspace error Chunk e .. 292
OnLine Limits for Chunks 293
ReservedPages. 295
PAGE_PZERO.0 297
PAGE_CONFIG 29
PAGE_CKPT 29
PAGE_DBSP29
PAGE_PCHUNK 2100
PAGE_MCHUNK. 210
PAGE_ARCH 2102
Chunk Free-ListPage. 2-103
tblspace Thilspace . . . C e e e oo 2104
tbilspace Tblspace Entrles S [0 [
Tblspace Number. 2105
tblspace Tblspace Size . . . Ce e ... 2-106
tbilspace Tblspace Bit-Map Page C e e ... Lo2-107
Database Thlspace. . . . e 24107
Create a Database: What Happens on DISk 2-108
Allocate DiscSpace 2-109
Track Systems Catalogs. 2-109
OnLine Limits for Databases 2110
Create a Table: What Happens on DISk Coe ... 2110
Allocate Disc Space . . . s A I
Add Entry to tblspace Tblspace s A A
Add Entry to System Catalog Tables 211
Create a Temporary Table: What Happenson Disk. 2-113
Placement 2113
Tracking . 2113
Cleanup 2114

2-4 IBM Informix OnLine Database Server Administrator's Guide

StructureofanExtent2-114

Extent Size.214
PageTypes25
Next Extent Allocation.2-117
Structure of a DbspacePage2-120
PageHeader2121
Timestamp2121
Slot Table S A |
Data Row Format and ROW|d 2 A
Data Pages and Data Row Storage.2-125
Single-Page Storage2-126
Multipage Storage2-127
Storage of Modified Rows2-129
Page Compression2-133
Structure ofan IndexPage2-133
The Root NodePage2-134
Leaf NodePages2-136
Index Key Entries2-138
Branch Node Pages. . . s Y
Structure of a Dbspace Bit-Map Page I X
2-Bit Bit-Mapped Pages2-143
4-Bit Bit-Mapped Pages2-14
Blob Storage and the Blob Descriptor.2-145
Structure of a Dbspace BlobPage2-146
Blobspace Page Types2-148
Blobspace Free-MapPage2-148
Blobspace Bit-MapPage2-148
Blobpage . . . Coe e oo 2-149
Structure of a Blobspace Blobpage Coe oo L2-149
Physical Log. .2152
Logical Log Files . . . Ce e 2154
Fast Recovery and Data Restore e v
File Rotation .2-155
FileContents .2-156
Number and Size.2-156
Blobspace Logging2-158
Long Transactions2-159

System Architecture 2-5

2-6 IBM Informix OnLine Database Server Administrator's Guide

In This Chapter

In this guide, system architecture is interpreted broadly to include OnLine
database server processes as well as OnLine shared memory and disk data
structures. This chapter provides optional reference material about OnLine 5.x
operation that is intended to deepen your understanding. Topics in other
chapters contain cross-references to specific topics in this chapter if
additional information could prove helpful for understanding.

OnLine system architecture can be separated into two major categories:

= Shared memory
= Disk data structures
The first half of this chapter covers shared-memory topics. The second half of

this chapter, which begins on page 2-81, describes information related to the
disk data structures.

Initialization

OnLine initialization refers to two related activities: shared-memory initial-
ization and disk-space initialization. To initialize OnLine, you execute the
tbinit process. You can do this directly from the UNIX command line or
indirectly via DB-Monitor. The options you include in the tbinit command or
the option you select from DB-Monitor determines the specific initialization
procedure that tbinit executes.

Refer to page 2-10 for a detailed description of what happens during shared-
memory initialization.

Refer to page 2-14 for a detailed description of what happens during disk-
space initialization.

System Architecture 2-7

Initialization Commands

2-8

Shared-memory initialization establishes the contents of shared memory
(OnLine internal tables and buffers) according to the parameter values
contained in the configuration file. The tbinit process reads the configuration
file and detects and implements any changes in the size or location of any
OnLine shared-memory structure since the last initialization. A record of the
changes is written to the OnLine message log as well.

Two key differences distinguish shared-memory initialization from disk-
space initialization:

= Shared-memory initialization has no effect on disk space allocation
or layout; no data is destroyed.

» Fast recovery is performed as part of shared-memory initialization.
(Refer to page 4-39 for a description of fast recovery.)

Disk-space initialization uses the values stored in the configuration file to
create the initial chunk of the root dbspace on disk and to initialize shared
memory. When you initialize disk space, shared memory is automatically
initialized for you as part of the process.

When you initialize OnLine disk space, you overwrite whatever is on that
disk space. If you reinitialize disk space for an existing OnLine system, all
data in the earlier OnLine system becomes inaccessible and, in effect, is
destroyed.

The tbinit process is the first OnLine process executed by an administrator.
During initialization, the tbinit process forks and spawns a tbinit child
process, which is the tbinit daemon. The tbinit daemon process does most of
the initialization work and, after initialization is complete, serves as the
master OnLine daemon.

Initialization Commands

Only user informix or root can execute tbinit and initialize OnLine. OnLine
must be in offline mode when you begin initialization.

You execute the tbinit process by entering the command tbinit (with or
without command-line options) at the UNIX prompt or by requesting initial-
ization through DB-Monitor.

IBM Informix OnLine Database Server Administrator's Guide

Initialization Commands

As thinit executes, it reads the configuration file named by the environment
variable TBCONFIG. Refer to page 1-11 for further information about OnLine
configuration files and TBCONFIG.

Shared Memory Commands
You can direct OnLine to initialize shared memory in any one of six ways:

s tbinit (UNIX command line)

s thinit-p (UNIX command line)

= tbinit-s (UNIX command line)

= tbhinit-p -s (UNIX command line)

= Mode menu, Startup option (DB-Monitor)

= Parameters menu, Shared-Memory option (DB-Monitor)

If you execute tbinit without options, OnLine is left in online mode after
shared memory is initialized.

You can also include a -y option to automatically respond *“yes” to all
prompts.

The -p option directs the tbinit daemon not to search for (and delete)
temporary tables left by database server processes that died without
performing cleanup. If you use this option, OnLine returns to online mode
more rapidly, but space used by temporary tables left on disk is not
reclaimed.

The -s option initializes shared memory and leaves OnLine in quiescent
mode.

The Mode menu, Startup option initializes shared memory and leaves
OnLine in quiescent mode.

You do not reinitialize shared memory when you merely change modes from
quiescent to online.

The Parameters menu, Shared-Memory option displays the values in the
configuration file before tbinit initializes shared memory, enabling you to
review and modify the values. This option initializes shared memory and
leaves OnLine in quiescent mode.

System Architecture 2-9

What Happens During Shared-Memory Initialization

2-10

Disk Space Commands

You can direct OnLine to initialize disk space (and automatically initialize
shared memory) in any one of three ways:

s tbinit-i (UNIX command line)
s thinit-i -s (UNIX command line)
= Parameters menu, Initialize option (DB-Monitor)

When you initialize disk space, all existing data on the disk you are initial-
izing is destroyed.

If you use only the -i option, OnLine is left in online mode after initialization.

If you use both the -i and -s options, OnLine is left in quiescent mode. If you
initialize OnLine via DB-Monitor, OnLine is left in quiescent mode.

What Happens During Shared-Memory Initialization

The tbinit process initializes shared memory, without initializing disk space,
when user informix or root executes any one of the following commands:

= thinit

s thinit-p

s thinit-s

s tbinit-p-s

You can execute any one of these commands from the UNIX prompt. If you
initialize shared memory from within DB-Monitor, the tbmonitor process
executes thinit -s for you, either from the Parameters menu, Shared-Memory
option, or from the Mode Menu, Startup option. Refer to page 2-8 for further
information about each of the tbinit command-line options.

The following list outlines the main tasks completed during shared-memory
initialization.

IBM Informix OnLine Database Server Administrator's Guide

What Happens During Shared-Memory Initialization

Shared-Memory Initialization Procedure

The tbinit process calculates configuration values.

The tbinit daemon creates OnLine shared memory.

The tbinit daemon attaches to shared memory.

The tbinit daemon initializes shared-memory structures.
The tbinit daemon wakes parent tbinit process.

The tbinit daemon initiates fast recovery.

The tbinit daemon initiates the first checkpoint.

The tbinit daemon drops temporary tables (optional).

© ® N o g &~ wbdb e

The tbinit daemon documents changes in the configuration
parameter values.

10. The thinit daemon sets forced residency, if specified.
11. The tbinit daemon begins looping as master daemon.

The tbinit daemon allocates OnLine shared-memory segments during
shared-memory initialization. OnLine shared-memory space cannot be
allocated or deallocated dynamically. If you change the size of shared
memory by modifying a configuration file parameter, you must reinitialize
shared memory by taking OnLine offline and then taking it to quiescent
mode.

Step 1: Calculate Configuration Values

The tbinit process reads the configuration values contained in the file
specified by $INFORMIXDIR/etc/$STBCONFIG. If TBCONFIG is not specified,
tbinit reads the values from $INFORMIXDIR/etc/tbconfig. If tbconfig cannot
be found and TBCONFIG is not set, tbinit reads the values from tbconfig.std.
If TBCONFIG is set but the specified file cannot be accessed, an error message
is returned. Refer to page 1-11 for further information about the OnLine
configuration files.

The process compares the values in the current configuration file with the
previous values, if any, that are stored in the root dbspace reserved page,
PAGE_CONFIG. Where differences exist, thinit uses the values from the
configuration file for initialization. Refer to page 2-95 for further information
about root dbspace reserved pages.

System Architecture 2-11

What Happens During Shared-Memory Initialization

2-12

The tbinit process uses the configuration values to calculate the required size
of OnLine shared memory.

Step 2: Create Shared Memory

After tbinit finishes computing the configuration values, it forks a child
process, which becomes the tbinit daemon. From this point on, the child
(daemon) process performs the initialization tasks. The parent process sleeps
until the child wakes it.

The tbinit daemon creates shared memory by acquiring the shared-memory
space from UNIX. The first segment size tbinit tries to acquire is the size of
shared memory, rounded up to the nearest multiple of 2 KB.

If tbinit cannot acquire a segment this large, it tries to acquire two shared-
memory segments that are each half the size of shared memory.

This “halve the size and double the number” tactic is repeated until thinit
acquires enough segments to meet OnL.ine requirements.

Step 3: Attach to Shared Memory

Next, tbinit attaches the OnLine shared-memory segments to its virtual
address space. Refer to page 2-24 for a detailed explanation of how tbinit
finds and attaches to shared memory.

Step 4: Initialize Shared Memory Structure

After attaching to shared memory, the tbinit daemon clears the shared-
memory space of uninitialized data. Next tbinit lays out the shared-memory
header information and initializes data in the shared-memory structures.
(For example, tbinit lays out the space needed for the logical log buffer,
initializes the structures, and links together the three individual buffers that
form the logical log buffer.)

After tbinit remaps the shared-memory space, it registers the new starting
addresses and sizes of each structure in the new shared-memory header.

IBM Informix OnLine Database Server Administrator's Guide

What Happens During Shared-Memory Initialization

During shared-memory initialization, disk structures and disk layout are not
affected. Essential address information (such as the locations of the logical
and physical logs) is read from disk. These addresses are used to update
pointers in shared memory.

Step 5: Wake Parent Process

After the tbinit daemon updates all pointers, it wakes the parent tbinit
process and writes a “shared-memory initialization complete” message in
the OnLine message log (specified as MSGPATH in the configuration file). The
prompt returns to the user at this point, and any error messages that might
have passed from the daemon to the parent process are displayed. The parent
process goes away at this point. Its role is ended.

Steps 6 and 7: Initiate Fast Recovery and First Checkpoint

Shared memory is initialized. The tbinit daemon initiates fast recovery.
(Refer to page 4-39 for further information about fast recovery.)

After fast recovery executes, tbinit initiates a checkpoint. (Refer to page 2-70
for further information about checkpoints.) As part of the checkpoint
procedure (page 2-72), tbinit checks the database tblspace index to verify
that all database names are unique. (Refer to page 2-107 for further infor-
mation about the database tblspace.)

After the checkpoint completes, the daemon writes a “checkpoint complete”
message in the OnLine message log.

OnLine is in quiescent mode.

Step 8: Drop Temporary Tables (Optional)

The tbinit daemon begins a search through all dbspaces for temporary
tbispaces. (If you executed tbinit with the -p option, tbinit skips this step.)
These temporary tblspaces would have been left by user processes that died
prematurely and were unable to perform proper cleanup. Any temporary
tbispaces are deleted and the disk space is reclaimed.

System Architecture 2-13

What Happens During Disk-Space Initialization

2-14

Step 9: Document Configuration Changes

The tbinit daemon compares the values stored in the configuration file with
the values formerly stored in the root dbspace reserved page PAGE_CONFIG.
Where differences exist, thinit notes both values (old and new) in a message
written to the OnLine message log. This action is for documentation only;
tbinit has already written the new values from the configuration file into the
root dbspace reserved page.

Step 10: Check for Forced Residency

The tbinit daemon reads the value of RESIDENT, the configuration parameter
that describes shared-memory residency. If RESIDENT is set to 1, tbinit calls
the tbmode utility process, which tries to enforce residency of shared
memory. If the host UNIX system does not support forced residency, the
initialization procedure continues and residency is not enforced. An error is
returned.

Step 11: Begin Looping as Master Daemon

Setting residency is the last initialization task that the daemon performs.
After the RESIDENT parameter is processed, the tbinit daemon remains
running indefinitely. From this point forward, tbinit serves as the OnLine
master daemon.

What Happens During Disk-Space Initialization

The tbinit process initializes disk space when user informix or root executes
either of the following commands:

s tbinit-i
s« thinit-i-s

You can execute either of these commands from the UNIX prompt. If you
initialize shared memory from within DB-Monitor, the tbmonitor process
executes tbinit -i -s from the Parameters menu, Initialize option. Refer to
page 2-8 for further information about each of the tbinit command-line
options.

IBM Informix OnLine Database Server Administrator's Guide

What Happens During Disk-Space Initialization

Important: Do not initialize disk space without careful consideration. As part of the
procedure, initialization destroys all data on the portion of the disk where the new
root dbspace (and its mirror) will be located.

Here are the main tasks that are completed during disk-space initialization:

The tbinit process calculates configuration values.

The tbinit daemon creates OnLine shared memory.

The tbinit daemon attaches to shared memory.

The tbinit daemon initializes shared-memory structures.
The tbinit daemon initializes disk space.

The tbinit daemon wakes parent tbinit process.

The tbinit daemon initiates the first checkpoint.

OnLine changes to quiescent mode.

© ® N o g &~ wbdb e

The tbinit daemon sets forced residency, if specified.

=
©

The tbinit daemon begins looping as master daemon.

When you initialize disk space, shared memory is automatically initialized.
However, disk-space initialization does not follow the same steps outlined on
page 2-10. Disk-space initialization and shared-memory initialization are
interrelated but disk-space initialization is more than extra steps added to the
shared-memory initialization procedure.

Step 1: Calculate Configuration Values

The tbinit process reads the configuration values contained in the file
specified by $INFORMIXDIR/etc/$TBCONFIG. If TBCONFIG is not specified,
tbinit reads the values from $INFORMIXDIR/etc/tbconfig. If tbconfig cannot
be found and TBCONFIG is not set, thinit reads the values from tbconfig.std.
If TBCONFIG is set but the specified file cannot be accessed, an error message
is returned. Refer to page 1-11 for further information about the OnLine
configuration files.

The tbinit process writes all the values from the configuration file into its
private data space. Then tbinit uses the values to calculate the required size
of OnLine shared memory. In addition, tbinit computes additional configu-
ration requirements from internal values. Space requirements for overhead
are calculated and stored where it is available to tbinit.

System Architecture 2-15

What Happens During Disk-Space Initialization

After tbinit finishes computing the configuration values, it forks a child
process, which becomes the tbinit daemon. From this point on, the child
(daemon) process performs the initialization tasks. The parent process sleeps
until the child wakes it.

Step 2: Create OnLine Shared Memory

The tbinit daemon creates shared memory by acquiring the shared-memory
space from UNIX. The first segment size tbinit tries to acquire is the size of
shared memory, rounded up to the nearest multiple of 2 KB.

If tbinit cannot acquire a segment this large, it tries to acquire two shared-
memory segments that are each half the size of shared memory.

This “halve the size and double the number” tactic is repeated until tbinit
acquires enough segments to meet OnL.ine requirements.

Step 3: Attach to Shared Memory

Next, tbinit attaches the OnLine shared-memory segments to its virtual
address space. Refer to page 2-24 for a detailed explanation of how tbinit
finds and attaches to shared memory.

Step 4: Initialize Shared-Memory Structures

After attaching to shared memory, the tbinit daemon clears the shared-
memory space of uninitialized data. Then tbhinit lays out the shared-memory
header information and initializes data in the shared-memory structures.
(For example, tbinit lays out the space needed for the logical log buffer and
then initializes and links together the three individual buffers that become
the logical log buffer.)

Step 5: Initialize Disk Space

After shared-memory structures are initialized, the tbinit daemon begins

initializing the disk. It initializes all 12 reserved pages that are maintained in
the root dbspace on disk and writes PAGE_PZERO control information to the
disk. (Refer to page 2-95 for further information about root dbspace reserved

pages.)

2-16 IBM Informix OnLine Database Server Administrator's Guide

What Happens During Disk-Space Initialization

Next, tbinit reserves space in the initial chunk of the root dbspace for the
physical and logical logs. As part of the same step, tbinit updates the pointers
in shared memory with the new disk addresses. The daemon repeats this
process for each disk structure. In each pass, tbinit reads configuration
values from its private data space, creates a structure and then updates any
associated structures in shared memory with required address information.
If mirroring is enabled and a mirror chunk is specified for the root dbspace,
space for the mirror chunk is reserved during this process. In this way, shared
memory is initialized structure by structure.

Next, tbinit initializes the tblspace tblspace, which is the first tblspace in the
root dbspace. The tbispace tblspace size is calculated from the size of the root
dbspace. (Refer to page 2-104 for further information about the tbispace
tbispace.)

The database tblspace is initialized next. (Refer to page 2-107 for further
information about the database tblspace.)

Step 6: Wake Parent tbinit Process

After the tbinit daemon builds the database tblspace, it wakes the parent
tbinit process and writes an “initialization complete” message in the OnLine
message log (specified as MSGPATH in the configuration file). The prompt
returns to the user at this point. Any error messages that might have been
passed from the daemon to the parent process are displayed, either at the
UNIX command line or within DB-Monitor. The parent process goes away at
this point. Its role is ended.

Step 7: Initiate First Checkpoint

Next, the tbinit daemon begins the first OnLine checkpoint. Data buffers are
flushed, including the logical log and physical log buffers. The daemon
creates a unique index for the database tbilspace on the column that contains
database names and continues with the checkpoint. (The index is used later
to ensure that all database names are unique.) After the checkpoint
completes, the daemon writes a “checkpoint complete” message in the
OnLine message log. (Refer to page 2-70 for further information about
checkpoints.)

System Architecture 2-17

UNIX Kernel and Semaphore-Allocation Parameters

2-18

Step 8: Change to Quiescent Mode

After the checkpoint completes, the tbinit daemon takes OnLine to quiescent
mode. All configuration information in the tbinit private data space is
written to the second reserved page in the initial chunk of the root dbspace,
PAGE_CONFIG. If thinit was executed with the -s option, OnLine remains in
quiescent mode. Otherwise, tbinit takes OnLine to online mode.

Step 9: Set Forced Residency

Once OnLine reaches its destination mode, either quiescent or online, the
tbinit daemon reads the value of RESIDENT, the configuration parameter that
describes shared-memory residency. If RESIDENT is set to 1, tbinit calls the
tbmode utility process, which tries to enforce residency of shared memory. If
the host UNIX system does not support forced residency, the initialization
procedure continues and residency is not enforced. An error is returned.

Step 10: Loop as Master Daemon

Setting residency is the last initialization task that the daemon performs.
After the RESIDENT parameter is processed, the tbinit daemon remains
running indefinitely. From this point forward, tbinit serves as the OnLine
master daemon.

UNIX Kernel and Semaphore-Allocation Parameters

Nine UNIX configuration parameters can affect the use of shared memory by
OnLine. (Parameter names are not provided because they vary among
platforms. Not all parameters exist on all platforms.)

For specific information about your UNIX environment, refer to the machine-
specific file, SINFORMIXDIR/release/ONLINE_5.x, that arrived with the
OnLine product.

Six of the nine parameters are kernel parameters:

= The maximum shared-memory segment size, expressed in kilobytes
or bytes
= The minimum shared-memory segment size, expressed in bytes

s The maximum number of shared-memory identifiers

IBM Informix OnLine Database Server Administrator's Guide

UNIX Kernel and Semaphore-Allocation Parameters

» The shared-memory lower-boundary address

= The maximum number of attached shared-memory segments per
process

= The maximum amount of shared memory system-wide
The remaining three parameters are semaphore-allocation parameters;

= The maximum number of semaphore identifiers
= The maximum number of semaphores
= The maximum number of semaphores per identifier

When tbinit creates the required shared-memory segments, it attempts to
acquire as large a segment as possible. The first segment size tbinit tries to
acquire is the size of shared memory, rounded up to the nearest multiple of
2 KB.

OnLine receives an error from the operating system if the requested segment
size is greater than the maximum allowable size. If OnLine receives an error,
tbinit divides the requested size by 2 and tries again. For most installations,
more than one segment is required because of a UNIX kernel limitation.
Attempts at acquisition continue until the largest segment size that is a
multiple of 2 KB can be created. Then tbinit creates as many additional
segments as are required to meet shared-memory requirements.

Shared-memory identifiers affect OnLine operation when a user process
attempts to attach to shared memory. For most operating systems, there are
no limits on the number of shared-memory identifiers that a particular user
process can create or attach to. Instead, user processes receive identifiers on
a “first come, first served” basis, up to the limit that is defined for the
operating system as a whole.

You might be able to calculate the maximum amount of shared memory that
the operating system can potentially allocate by multiplying the number of
shared-memory identifiers by the maximum shared-memory segment size.

Check that the maximum amount of memory that can be allocated is equal to
the total addressable shared-memory size for a single operating-system
process. The following display expresses the concept another way:

Maxi mum anount of shared nenory =

(Maxi mum nunber of attached shared-nenory segnments per process) X
(Maxi mum shar ed- renory segnent si ze)

System Architecture 2-19

UNIX Kernel and Semaphore-Allocation Parameters

2-20

If this relationship does not hold, either one of two undesirable situations
could develop:

= If the total amount of shared memory is less than the total
addressable size, you are able to address more shared memory for
the operating system than that which is available.

= If the total amount of shared memory is greater than the total
addressable size, you can never address some amount of shared
memory that is available. That is, space that could potentially be
used as shared memory cannot be allocated for that use.

OnLine operation requires one UNIX semaphore for each user structure in
shared memory. During shared-memory creation, tbinit attempts to allocate
semaphores in blocks of 25. If the maximum number of semaphores per
shared-memory identifier is fewer than 25, tbinit receives an error when it
attempts to allocate the semaphores. The maximum number of semaphore
identifiers should be close to the maximum number of OnLine users on a host
machine, divided by 25.

When OnLine user processes attach to shared memory, each user process
specifies the address at which to attach the first segment. This address is the
OnLine parameter SHMBASE.

OnLine assumes that the next segment can be attached at the address of the
previous segment, plus the size of the shared-memory segment; that is,
contiguous to the first segment. However, your UNIX system might set a
parameter that defines the lower-boundary address of shared memory for
attaching shared-memory segments. If so, the next shared-memory segment
attempts to attach at the address of the previous segment, plus the value of
the lower-boundary address. If the lower-boundary address is greater than
the size of the shared-memory segment, the next segment is attached to a
point beyond the end of the previous segment, creating a gap between the
two segments. Since shared memory must be attached to a user process so
that it looks like contiguous memory, this gap creates problems. If this
situation occurs, OnLine receives errors during the attach. An example of this
situation is shown in Figure 2-1.

IBM Informix OnLine Database Server Administrator's Guide

UNIX Kernel and Semaphore-Allocation Parameters

Figure 2-1
Operating system memory Shared memory
must be attached to

a user process so
User process that it looks like
contiguous

memory.

Shared-memory
segment

- SHMBASE

Gap
Next segment of

~¢—— shared memory
should attach here.

Shared-memory

segment Next segment
attaches here when
lower boundary is too
large.

System Architecture 2-21

OnLine User Processes

2-22

OnLine User Processes

An OnLine user process is any process that eventually needs to attach to
OnLine shared memory. User processes include three types:

= OnLine database server processes hamed
$INFORMIXDIR/lib/sglturbo

= OnLine daemon processes, such as tbinit, tbundo, and tbpgcl
= OnLine utility processes, such as tbmode, tbmonitor, and tbtape

An application development tool, such as an IBM Informix 4GL program, is
not a user process by this definition. All OnLine user processes, regardless of
type, communicate with each other through OnLine shared memory.

Shared memory is implemented by giving all OnLine user processes access
to the same shared-memory segment (or group of segments) associated with
an OnLine database server. Processes communicate with each other as they
request, lock, and release various shared-memory resources. Each process
manages its work by maintaining its own set of pointers to shared-memory
addresses for resources such as buffers, locks, and latches.

When a user process requires access to OnLine shared-memory resources, it
attaches shared-memory segments to its virtual address space.

Every OnLine user process manages a portion of memory that is not within
shared memory. This memory space is referred to as the user process’s virtual
address space. Within this address space, the user process maintains shared,
executable OnLine code (C program text) and private data. If the user process
requires additional memory;, it can be dynamically allocated from UNIX.
Dynamic allocation of additional memory is accomplished with C library
calls, such as nmal | oc() . This dynamic allocation is in contrast to OnLine
shared memory, which does not grow.

IBM Informix OnLine Database Server Administrator's Guide

OnLine User Processes

Figure 2-2 illustrates the virtual address space of a user process after the user
process has attached to shared memory. For a detailed discussion of how a
user process attaches to shared memory, refer to page 2-24.

Figure 2-2
UNIX memory An example of a
user process virtual
User process virtual address space.
address space Depending on the
machine, shared
memory is
Unallocated space allocated “above”
or “below” the
value of SHMBASE.
OnLine shared-
memory
I segments ———
- SHMBASE
Private data

Shared database server code
(C program text)

System Architecture 2-23

How User Processes Attach to Shared Memory

2-24

How User Processes Attach to Shared Memory

OnLine requires atechnique to ensure that all OnLine user processes find and
gain access to the same shared-memory segments. If two or more OnLine
database servers exist on a single UNIX host machine, the shared-memory
segments associated with each OnLine server exist at different locations in
physical memory. The shared-memory segments for each OnLine server
must be uniquely identifiable to the database user processes.

The following list outlines the major steps that are completed when an
OnLine user process attaches to shared memory:

1. User process obtains SERVERNUM from configuration file.

2. User process calculates a shared-memory key value using
SERVERNUM.

3. User process requests a shared-memory segment using the shared-
memory key value. UNIX returns the shared-memory identifier for
the first shared-memory segment.

4. User process directs UNIX to attach the shared-memory segment to
its process space at SHMBASE.

5. If required, additional shared-memory segments are attached to be
contiguous with the first segment.

The tbinit daemon process creates the OnLine shared-memory segments
during initialization. (Refer to page 2-10.) Associated with each shared-
memory segment are two pieces of information:

s Ashared-memory key value
= A shared-memory identifier

Step 1: Obtain SERVERNUM

When a user process directs the UNIX operating system to a shared-memory
segment, it defines the segment it needs using the shared-memory key value.
To attach to the segment, the user process must acquire from UNIX the shared
memory identifier that is associated with that segment. The UNIX operating
system uses these identifiers to track each shared-memory segment.

IBM Informix OnLine Database Server Administrator's Guide

How User Processes Attach to Shared Memory

Step 2: Calculate Shared-Memory Key Value

When a user process is ready to attach to shared memory, it calculates a value
that serves as the shared-memory key to identify to UNIX the first shared-
memory segment. To ensure that all user processes within a single OnLine
system attach to the same shared-memory segments, the key value must be
shared among all OnLine user processes. To ensure that the user processes
from independent OnLines do not become entangled, the key value must be
unique for each OnLine system.

The shared-memory key value that each user process arrives at is defined by
the calculation:

(SERVERNUM * 65536) + shnkey

The database configuration parameter SERVERNUM uniquely identifies the
shared-memory segments for each OnLine system. If more than one OnLine
database server exists on a single host machine, the calculated key values are
separated by the difference between the two values of SERVERNUM, multi-
plied by 65536.

The value of shmkey is set internally and cannot be changed by the user. (The
shmkey value is 52564801 in hexadecimal representation or 1,381,386,241 in
decimal.)

The value (SERVERNUM * 65536) is the same as multiplying SERVERNUM by
hexadecimal 1000.

Steps 3 and 4: Request Shared-Memory Segment and Attach to
SHMBASE

The user process transfers to UNIX the calculated shared-memory key value.
In return, the UNIX operating system passes back the shared-memory
segment identifier associated with the value of the shared-memory key.
Using this identifier, the user process requests that the operating system
attach this segment of shared memory to the user process space at the
address specified as the OnLine configuration parameter SHMBASE.

System Architecture 2-25

How User Processes Attach to Shared Memory

2-26

The first shared-memory segment is attached to the virtual address space of
each process at the same virtual address defined as SHMBASE. SHMBASE
identifies the specific virtual address where the database server processes
attach the first, or base, shared-memory segment. (Refer to Figure 2-2 on
page 2-23 for an illustration of the virtual address space of a database server
process.)

The reason that all user processes share the same SHMBASE value is to speed
execution. All user processes can reference locations in shared memory
without recalculating shared-memory addresses because all addresses begin
at the same base address. All addresses assume that shared memory begins
at the address specified as SHMBASE. That is, all addresses are relative to
SHMBASE. If each user process attached to shared memory at a different
location, shared-memory addresses would be relative to the start of shared
memory and would have to be recalculated for each user process, slowing
execution.

The specific value of SHMBASE is often machine-dependent. It is not an
arbitrary number. Informix selects a value for SHMBASE that will keep the
shared-memory segments safe in case the user process dynamically acquires
additional memory space.

Different UNIX systems accommodate additional memory at different virtual
addresses. Some UNIX architectures extend the highest virtual address of the
user process data segment to accommodate the next segment. In this case, it
is possible that the data segment could grow into the shared-memory
segment.

The server process function stack or (heap) can pose another threat. Some
UNIX architectures begin the function stack at a high virtual address to keep
it clear of the growing data segments. If the stack begins too close to the
shared-memory segments, the stack can overwrite the end of shared memory.

Some versions of UNIX require the user to specify a SHMBASE of virtual
address of 0. The 0 address informs the UNIX kernel that the kernel should
pick the best address at which to attach the shared-memory segments. This
kernel-selects option is an attempt to respond to the many different ways that
an application can affect the growth of the server process . However, all UNIX
architectures do not support the kernel-selects option. Moreover, the kernel’s
selection is not always the best choice for all applications.

Informix recommends that you do not attempt to change the value of
SHMBASE.

IBM Informix OnLine Database Server Administrator's Guide

How User Processes Attach to Shared Memory

The user process lays out the first shared-memory segment, which includes
the shared-memory header. Sixteen bytes into the header, the user process
obtains the following data:

= The total size of shared memory for this OnLine server
= The size of each shared-memory segment

The user process then calculates how much shared memory it has and how
much is still required. (Each user process must acquire the total amount of
shared memory:.)

Step 5: Attach Additional Segments

If one or more shared-memory segments are required, the user process makes
an additional request to the UNIX operating system. To obtain the key value
for the shared-memory segment that it needs, the user process adds the value
1 to the previous value of shmkey. (Given the initial calculation of
(SERVERNUM * 65536) + shmkey, this means that any OnLine server can
request up to 65,536 shared-memory segments before the possibility arises
that one OnLine system could request a shared-memory key value used by
another OnLine system.)

Just as before, the user process transfers the key value to UNIX, which returns
a shared-memory identifier. The user process directs the operating system to
attach the segment at the address defined by the relation:

SHVBASE + (seg_size x nunber of attached segments)

(If your operating system uses a parameter to define the lower boundary
address, and this parameter is set incorrectly, it can prevent the shared-
memory segments from being attached contiguously. Refer to page 2-20 for
more information about UNIX parameters and attaching to shared memory.)

After the new shared-memory segment is attached, the user process again
compares the total size of shared memory with the amount of shared
memory now attached. If additional memory is needed, the user process
recalculates the next shared-memory key value and requests the associated
shared-memory segment from UNIX. This process repeats until the user
process has acquired the total amount of shared memory.

System Architecture 2-27

User Processes and Critical Sections

2-28

User Processes and Critical Sections

A critical section is a section of OnLine code that comprises a set of disk
modifications that must be performed as a single unit; either all of the modifi-
cations must occur or none can occur. OnLine designates critical sections to
maintain physical consistency in a way that is analogous to the way that
transactions maintain logical consistency.

Important: If any user process dies while it is in a critical section, OnLine initiates
an abort by executing an immediate shutdown.

The abort is required to maintain the physical and logical consistency of
OnLine data. An OnLine user process in a critical section is probably holding
shared-memory resources needed to modify data. If the user process dies
prematurely, it might be unable to release all these resources.

Within the space of a critical section, it is impossible for OnLine to determine
which shared-memory resources should be released and which changes
should be undone to return all data to a consistent point. Therefore, if a user
process dies while it is in a critical section, OnLine immediately takes action
to return all data to the last known consistent point.

Fast recovery is the procedure OnLine uses to quickly regain physical and
logical data consistency up to and including the last record in the logical log.
OnLine initiates fast recovery indirectly by starting an immediate shutdown.
After immediate shutdown, the subsequent startup initiates fast recovery
and returns OnLine data to physical and logical consistency. (Refer to

page 4-39 for further information about fast recovery:.)

IBM Informix OnLine Database Server Administrator's Guide

OnLine User Process Status and States

OnLine User Process Status and States

The tbstat -u command prints a profile of user process activity. To interpret
why a user process might be waiting for a latch or waiting for a checkpoint
to complete, refer to the information contained on the pages indicated.

OnLine user process status flags occupy the first flag position of each entry
in the thstat -u display, users section. These flags describe a process that is
waiting. The flags indicate which of the following events is causing the wait:

B Waiting for a needed buffer to be released (refer to page 2-53)

C Waiting for a checkpoint to complete (refer to page 2-72)

G Wiaiting for the physical or logical log buffer to flush (refer to
page 2-74)

L Waiting for a needed lock to be released (refer to page 2-38)

S Waiting for a needed latch to be released (refer to page 2-41)

T Waiting for a transaction (valid only in the X/Open environment)

X Waiting for the rollback of a long transaction to complete (refer to

page 2-158)

Transaction status flags occupy the second position of each entry in the tbstat
-u display, users section. These flags describe the state of the transaction
associated with this user process. (Each OnLine user process is associated
with a transaction.) This transaction state information is informative but not
required, unless you are administering OnLine in the X/Open environment.
If you are interested in transaction status information, which is especially
helpful if you are administering IBM Informix STAR, refer to page 9-58.

If you are using IBM Informix TP/XA, refer to the product documentation.

The user process state flags occupy the third position of each entry in the
tbstat -u display, users section. These flags indicate if the OnLine user process
either is reading data (flag is R) or is inside a critical section of a transaction
(flag is X). Refer to page 2-27 for a definition of a critical section.

System Architecture 2-29

OnLine Database Server Process

2-30

The user process type flags occupy the fourth position of each entry in the
tbstat -u display, users section. These flags provide the following
information:

C The user process is dead and waiting for proper clean-up. (Refer to
page 2-33.)

D The user process is either tbinit or tbundo. (Refer to page 2-33.)

F The user process is a page-cleaner daemon, tbpgcl. (Refer to
page 2-33.)

M The user process is a DB-Monitor process, tbmonitor.

OnLine Database Server Process

The database server process, which can also be referred to as the database
engine process, manages all access to the database. The database server process
exists to service the needs of the application development tool. The two work
in a partnership. The application sends a request for data to the database
server. The server process executes the database query, acquires the
requested information, and sends the results back to the application devel-
opment tool process.

If OnLine is initialized, the tool process forks itself and then performs the
UNIX execv() function call. The database server process that is spawned is
specified by the SQLEXEC environment variable. If SQLEXEC is not specified,
an OnLine database server process is spawned by default.

OnLine system architecture maintains a one-to-one correspondence between
application processes and database server processes. The application process
is the parent process; the database server process is the child process. The
OnLine database server process is SINFORMIXDIR/lib/sqlturbo.

In the OnLine system, many server processes coexist, any one or all of which
might be active at any time. For the processes that are not active, their status
can be either “ready-to-run,” awaiting CPU resources, or suspended,
awaiting the completion of some other activity before they can be executed.
Processes that are suspended and waiting for some external event are said to
be sleeping.

IBM Informix OnLine Database Server Administrator's Guide

Orphaned Database Server Processes

The application development tool process and the database server process
communicate with each other through unnamed UNIX pipes. Each process
reads from one pipe and writes to the other. This interaction is illustrated in
Figure 2-3.

Figure 2-3
The application
process and the

Application Database database server
process server process
process communicate

through unnamed

UNIX pipes.

Orphaned Database Server Processes

A database server process is considered orphaned when the application devel-
opment tool process (the parent process) dies prematurely and cannot
terminate its associated database server process (the child process). The
database server process continues working, orphaned, and can create bottle-
necks in the system. For example, an orphaned server process might hold
shared-memory resources without properly releasing them, forcing legit-
imate server processes to wait indefinitely. You might be unable to gracefully
take OnLine to quiescent mode if an orphaned process remains attached to
shared memory. The lingering process must be killed before OnLine can be
brought to offline mode.

The database server process eventually discovers that its parent process has
died when the server process begins reading from or writing to a pipe. If the
server process is reading from a pipe, it receives a -1 or 0 from the blocked
read. If the server process is writing to a pipe, it receives a SIGPIPE signal. The
SIGPIPE signal indicates that the server is trying to write to a pipe whose
opposite end has been closed. At this point, the server process automatically
performs cleanup and terminates gracefully.

You might be tempted to kill a server process if you suspect the process is
orphaned. If the database server process is doing work, you might find
yourself waiting for the process to return to the pipe to read or to write. If the
Server process is in a wait state, waiting for a latch or a lock to be released,
this delay could be lengthy.

System Architecture 2-31

Orphaned Database Server Processes

2-32

Never kill an OnLine database server process with the UNIX ki I'| -9 command. If
you execute the ki | | -9 command and generate a SIGKILL signal while that
server process is holding a latch or is in a critical section of a transaction,
OnLine aborts with an immediate shutdown to preserve data consistency.

Never kill an application tool process with a SIGKILL signal. An application tool
process can, on occasion, get the attention of the database server process by
sending a signal that the server process can trap. The only signal that the
server process cannot trap is the SIGKILL signal. Therefore, there is no reason
for an administrator to use the SIGKILL signal to terminate application
processes. When you Kill an application process with kill -9, you can
create an orphaned database server process.

If you suspect a database server process has been orphaned, follow these
steps to verify that the process is not doing any database work before you
attempt to Kill it;

1. Obtain the database server process identification (pid) number from
tbstat -u output.

2. Check that the process is not in a critical section. Look at the third-
position flag of the thstat -u output. If the process flag is X, do not kill
the process; if you do, OnLine aborts with an immediate shutdown.

3. Check that the process is not holding a latch. Obtain the address of
the process from the tbstat -u output. Execute tbstat -s to look at a
summary of latch information. Verify that the address of this process
is not listed as the owner of any latch. If the process address is
associated with a latch, do not kill the process; if you do, OnLine
aborts with an immediate shutdown.

4. If the server process is not in a critical section and is not holding a
latch, user informix or root can kill the process with the command
tbmode -z pid.

Do not kill a database server process that is in a critical section or is holding
a latch; if you do, OnLine initiates an abort. Instead, wait until the server
process has exited the section or released the latch.

If the server process does not exit the section or release the latch, user
informix or root can execute tbomode -k to detach all processes from shared
memory and take OnLine to offline mode.

IBM Informix OnLine Database Server Administrator's Guide

OnLine Daemon Processes

OnLine Daemon Processes

Daemon processes are OnLine user processes that perform system-wide
tasks. Unlike database server processes, a daemon process is hot associated
with a corresponding application development tool process.

The OnLine system employs three different types of daemons, which are
listed below.

= tbinit, the master daemon

= tbundo, the undertaker daemon

= tbpgcl, a page-cleaner daemon
Daemon processes are identified in tbstat -u output by a D (daemon) flag or

an F (page cleaner or “flusher”) flag in the fourth flag position of the user
entry.

tbinit Daemon

The tbinit daemon is spawned by the tbinit process early in the initialization
process. The tbinit daemon occupies the first entry in the shared-memory
user table, which is represented by the first entry in tbstat -u output.

The tbinit daemon is responsible for most of the tasks of disk space and
shared-memory initialization. (Refer to page 2-7.)

The tbinit daemon also schedules the work of the page-cleaner daemons. If
no page-cleaner daemons exist, tbinit takes over page-cleaning responsibil-
ities. (Refer to page 2-74 for a detailed explanation of buffer page flushing,
which is the responsibility of the page-cleaner daemons.)

System Architecture 2-33

tbundo Daemon

tbundo Daemon

The tbundo daemon is called by the tbinit daemon to perform cleanup for
database server processes that die abnormally. As part of cleanup, tbundo
rolls back incomplete transactions and releases shared-memory resources
(such as locks and buffers) held by the server process when it died. The
tbundo daemon also removes the server process from any buffer wait lists. If
a server process had begun to commit a transaction before the process died
prematurely, tbundo detects that the commit is partially accomplished and
the daemon completes the commit.

The tbundo daemon occupies the second entry in the shared-memory user
table, which is represented by the second entry in tbstat -u output.

The tbundo daemon is not started until needed. Until it is started, tbundo
appears in the user table with a process identification number (pid) of 0. Once
called, tbundo receives the next pid from UNIX. After cleanup is complete,
the old pid assigned to tbundo is visible residually in the display of user
processes until tbundo is called on again, when it receives the next sequential
pid number. The pid number that appears in the user process display has no
relation to the number of times that tbundo has been called. Some UNIX
systems are unable to rename processes. In this situation, the tbundo daemon
appears as a second invocation of tbhinit.

tbpgcl Daemon

Page-cleaner daemons, named tbpgcl, are maintained to flush dirty pages
from the shared-memory buffer pool to disk. Page-cleaner daemons are
identified in the tbstat -u output by an F that appears in the fourth position
of the user entry.

As OnLine administrator, you determine the number of page-cleaner
daemons in your system (specified as CLEANERS in the configuration file). If
you choose to allocate zero page-cleaner daemons, thinit performs all page
flushing. If you choose a value greater than zero, tbinit acts as the master
page cleaner, scheduling the work of the page cleaners.

2-34 IBM Informix OnLine Database Server Administrator's Guide

tbpgcl Daemon

When OnLine is initialized, all page-cleaner daemons are started and placed
in idle mode. As master daemon, tbinit directs each tbpgcl to an LRU queue
of shared-memory buffers. (Refer to page 2-57 for more information about
the LRU queues.) Periodically, tbpgcl wakes and searches through the LRU
gueues, looking for buffers that need to be flushed. (Refer to page 2-58 for
information about the LRU queues and buffer flushing.)

Page-cleaner daemons (or the tbinit daemon) also perform the flushing
required during a checkpoint when OnLine shared-memory data is synchro-
nized with the data stored on disk. (Refer to page 2-70 for further information
about checkpoints.)

The recommended number of page-cleaner daemons is one daemon for each
disk dedicated to OnLine. The maximum number of page-cleaner daemons
permitted in OnLine is 32. (Refer to page 5-19 for further information on
tuning the value of CLEANERS to improve performance.)

The state of each page-cleaner daemon is tracked in the page-cleaner table in
shared memory and can be displayed with the command tbstat -F. (Refer to
page 7-87 for further information about monitoring page-cleaner activity
with tbstat -F.)

System Architecture 2-35

Shared Memory and Process Communication

Shared Memory and Process Communication

Shared memory refers to the use of the same memory segments by more than
one OnLine user process, enabling interprocess communication. Figure 2-4
on page 2-37 shows how multiple user processes can communicate by way of
shared memory.

Interprocess communication via shared memory has the following advan-
tages over systems in which server processes each maintain their own private
copy of data:

s Disk 170 is reduced because buffers, which are managed as a
common pool, are flushed on a system-wide basis instead of a per-
process basis.

= Execution time is reduced because only one copy of a data or index
page is maintained in shared memory. Processes do not need to
reread shared-memory buffers to ensure that their data is current.
Often, processes do not need to read a page in from disk if the page
is already in shared memory as a result of an earlier query.

2-36 IBM Informix OnLine Database Server Administrator's Guide

Shared Memory and Process Communication

Figure 2-4
User process A ~ User process B Multiple user
virtual address space virtual address space processes can

communicate by

way of shared
Unallocated space Unallocated space memory.

Private data Private data

Shared database server
code (C program text)

Shared database server cod
(C program text)

OnLine shared-
memory segments

System Architecture 2-37

Shared Memory and Buffer Locks

2-38

Shared Memory and Buffer Locks

A primary benefit of shared memory is the ability of multiple OnLine user
processes to share access to disk pages stored in the shared-memory buffer
pool. OnLine maintains process isolation while achieving this increased
concurrency through a strategy of buffer locking.

OnLine uses three types of locks to manage access to shared-memory buffers:

= Share locks
= Promotable, or update, locks
= Exclusive locks

Each of these lock types enforces the required level of OnLine process
isolation during execution.

Output from OnLine utilities, such as tbstat -k, uses the flags S, U, and X to
indicate the respective lock types.

For further information about locking and shared memory, refer to the
discussion of the shared-memory lock table (page 2-51) and shared-memory
buffer management (page 2-55).

Detailed information about locking and process isolation during SQL
processing is provided in IBM Informix Guide to SQL: Tutorial.

Buffer Share Lock

A buffer is in share mode, or has a share lock, if one or more OnLine user
processes have access to the buffer to read the data and none intends to
modify the data.

Buffer Update Lock

A buffer is in update mode, or has an update lock, if one user process intends
to modify the contents of the buffer. Multiple user processes can share the
buffer for reading, but no other user process can obtain an update lock or an
exclusive lock on this buffer. Processes requesting update or exclusive lock
access for this buffer are placed on the buffer’s user wait list until the update
lock is released.

IBM Informix OnLine Database Server Administrator's Guide

Managing Shared-Memory Resources

Buffer Exclusive Lock

A buffer is in exclusive mode, or has an exclusive lock, if a user process
demands exclusive access to the buffer. All other user processes requesting to
lock the buffer are placed on the user wait list for this buffer. When the
executing process is ready to release the exclusive lock, it wakes the next
process in the wait-list queue.

Managing Shared-Memory Resources
Shared memory is commonly divided into three sections:

= Header
= Internal tables
= Buffer pool

These components of shared memory are illustrated in Figure 2-5. The size of
OnLine shared memory, expressed in kilobytes, is displayed in any tbstat
output header.

In the broadest sense, shared-memory resources can be thought of as the set
of all entries in the shared-memory internal tables and page buffers. For
example, when a user process needs access to shared memory, it must acquire
an entry in the shared-memory user table. When a user process needs access
to an OnLine table, it must acquire an entry in the shared-memory tblspace
table. When a user process needs access to an OnLine page buffer, it must
acquire the entry in the buffer header table associated with that buffer.

System Architecture 2-39

Managing Shared-Memory Resources

Shared- User table
memory header
_> Lock table
Hash table
Dbspace table
Transaction table Chunk table
Latch table
Page-cleaner table
Thlspace table
Buffer pool
Hash table

Buffer header table

Hash table

Buffer locks
Latches

Timestamps
Hash tables

2-40 IBM Informix OnLine Database Server Administrator's Guide

Figure 2-5
Components of
shared
memory. The
shared-
memory header
contains
pointers to all other
shared-
memory
structures.

Consider what happens when two OnL.ine server processes attempt to attach
to shared memory simultaneously. Both server processes attempt to access
the next available slot in the user table. OnLine requires techniques by which
it can control concurrent access to individual shared-memory resources.

OnLine employs four mechanisms as part of shared-memory resource
management:

Managing Shared-Memory Resources

Buffer locks ensure process isolation while user processes contend for the
same shared-memory resources. (Refer to page 2-38 for further information
about buffer locks.)

Latches ensure that only one OnLine user process at a time can gain access to
any one shared-memory resource. (Refer to page 2-41 for further information
about latches.)

Timestamps provide a method of coordinating sequential activity. (Refer to
page 2-44 for further information about timestamps.)

Hashing is a technique that associates a hash table with a frequently used
table. The hash table permits rapid searches through a table to which items
are added unpredictably. (Refer to page 2-46 for further information about
hash tables.)

Shared-Memory Latches

OnLine uses latches to coordinate user processes as they attempt to modify
entries in shared memory. Every modifiable shared-memory resource is
associated with a latch. Before an OnLine user process can modify a shared-
memory resource (such as a table or buffer), it must first acquire the latch
associated with that resource. After the user process acquires the latch, it can
modify the resource. When the modification is complete, the user process
releases the latch.

If a user process tries to obtain a latch and finds it held by another user
process, the incoming process must wait for the latch to be released. If more
than one process needs a specific latch, the later processes must wait.

For example, two server processes can attempt to access the same slot in the
chunk table, but only one can acquire the latch associated with the table. Only
the process holding the latch can write its entry in the chunk table. The
second process must wait for the latch to be released.

As administrator, you cannot specify the number of latches available. The
number of latches available within OnLine is fixed, defined by the number of
modifiable shared-memory resources that result from your specific
configuration.

Refer to page 7-97 for information about monitoring latches using tbstat -s.

System Architecture 2-41

Managing Shared-Memory Resources

2-42

If an OnLine user process requires a specific latch, how does it determine if
the latch is available? The user process has two options:

= Test for the latch; if unavailable, do not wait (that is, do not block).
n Test for the latch; if unavailable, wait (that is, block).

Test-and-Set Institutions

Most machines use a single test-and-set instruction as part of the test that each
user process performs in its attempt to acquire a shared-memory latch. Test-
and-set, or TAS, prevents confusion between two user processes in a
multiuser environment. Without TAS, a user process could be interrupted
between the test of the latch (to see if it is available) and the setting of the latch
(to make it unavailable to other user processes). The interrupt could create a
situation in which more than one user process received “exclusive” access to
a resource.

To see how this confusion could occur, consider the following scenario.
Server Process A needs to acquire latch 201. Process A performs a test for the
latch and receives a positive response; the latch is available. Then the
processing time period for Process A ends. Process B begins executing.
Process B also needs latch 201. Process B performs a test for the latch and
receives a positive response since the latch is still available. Process B sets the
latch and continues processing. Process B is interrupted (that is, its timeslice
expired) before it is ready to release the latch. When Process A continues
executing, it incorrectly assumes that it can claim latch 201. The test-and-set
instruction performs the latch test and sets the latch as a single, uninter-
ruptable event, eliminating confusion among processes.

Spin and Test Again

When an OnLine user process attempts to acquire a latch, it tests the latch for
availability. If the latch is not available, the user process can either block or
not block. A third option is available on some multiprocessor UNIX operating
systems: spin and test again. The benefit of spinning instead of blocking is
that a user process can test for latch availability multiple times without the
overhead cost of putting the user process to sleep and later waking it. The
configuration parameter SPINCNT specifies the number of times that a user
process can spin and test without actually going to sleep. (Refer to page 5-24
for information about tuning this parameter to improve performance.)

IBM Informix OnLine Database Server Administrator's Guide

Managing Shared-Memory Resources

Semaphores

When an OnLine user process attempts to acquire a latch and finds that the
latch is unavailable, the user process can block until the latch is available. The
mechanism that signals the process to wake when the latch becomes
available is a UNIX semaphore.

The semaphore mechanism works likes this. Every OnLine user process is
associated with a semaphore. If a user process finds a latch unavailable, the
semaphore associated with the process is placed on a list of waiting
semaphores. When the user process holding the latch is ready to release it, the
holding user process looks to see if any user processes are waiting for the
latch. If so, the holding process releases the latch and wakes the first appro-
priate user process in the semaphore list.

If the latch to be released is a buffer latch, the holding user process wakes the
first waiting process that has a compatible lock access type. (Refer to
page 2-60 for further information about buffer acquisition.)

All semaphores are created when shared memory is created. In most UNIX
operating systems, the number of semaphores permitted is equal to the
maximum number of concurrent user processes, specified as USERS in the
OnLine configuration file.

UNIX kernel parameters can affect the number of sesmaphores created by your
UNIX operating system. (Refer to page 2-18 for a description of the role
played by UNIX kernel parameters.)

Forced Abort

If you explicitly kill a user process that is holding a latch, OnLine immedi-
ately initiates an abort to preserve data consistency. If an OnLine user process
is holding a latch, the implication is that the user process is intent on
modifying shared memory. When a user process terminates, the tbinit
daemon initiates proper cleanup, releasing all locks and other resources held
by the user process.

Although tbundo can perform routine cleanup for processes that die prema-
turely, data consistency prevents tbinit from releasing shared-memory
latches as part of cleanup. It is impossible for thinit to determine whether the
user process concluded its modifications before it was terminated or if the
database is in a consistent state.

System Architecture 2-43

Managing Shared-Memory Resources

2-44

OnLine resolves the dilemma by forcing an abort. When OnLine comes back
online, fast recovery occurs automatically. Fast recovery returns OnLine to a
consistent state through the last completed transaction.

(Refer to page 2-32 for instructions on the proper way to kill a database server
process. Refer to page 4-39 for further information about fast recovery.)

OnLine Timestamps

OnLine uses a timestamp to identify a time when an event occurred relative
to other events of the same kind. The timestamp is a 4-byte integer that is
assigned sequentially. The timestamp is not a literal time that refers to a
specific hour, minute, or second. When two timestamps are compared, the
one with the lower value is determined to be the older.

Each disk page has one timestamp in the page header and a second
timestamp in the last four bytes on the page. The page-header and page-
ending timestamps are synchronized after each write, so they should be
identical when the page is read from disk. Each read compares the times-
tamps as a test for data consistency. If the test fails, an error is returned to the
OnLine user process, indicating either that the disk page was not fully
written to disk, or that the page has been partially overwritten on disk or in
shared memory. (Refer to page 4-6 for further information about consistency-
checking errors and corrective actions.)

Refer to page 2-120 for further information about the layout of timestamp
information on a disk page.

In addition to the page-header and page-ending timestamp pair, each disk
page that contains a blob also contains one member of a second pair of times-
tamps. This second pair of timestamps is referred to as the blob timestamp pair.
The blob timestamp that appears on the disk page is paired with a timestamp
that is stored with the forward pointer to this blob segment, either in the data
row (with the blob descriptor) or with the previous segment of blob data.
(Refer to page 2-143 for more information about blob storage in the data row
and the blob descriptor.)

IBM Informix OnLine Database Server Administrator's Guide

Managing Shared-Memory Resources

The blob timestamp on the disk page changes each time the blob data on the
page is overwritten. The blob timestamp stored with the forward pointer
changes each time a new blob replaces the old blob. For example, when a blob
in a data row is updated, the new blob is stored on disk, and the forward
pointer stored with the blob descriptor is revised to point to the new location.
The blob timestamp in the data row is updated and synchronized with the
blob timestamp on the new blob’s disk page. The blob timestamp on the now-
obsolete disk page is no longer synchronized. (An illustration of blobspace
blob storage shows this in Figure 2-39 on page 2-150.)

Because retrieving a blob can involve large amounts of data, it might be
impossible to retrieve the blob data simultaneously with the rest of the row
data. Coordination is needed for blob reads that OnLine user processes may
perform at the Dirty Read or Committed read level of isolation. Therefore,
each read compares the two members of the blob timestamp pair as a test for
logical consistency of data. If the two timestamps in the pair differ, this incon-
sistency is reported as a part of consistency checking. (Refer to page 4-6 for
further information about consistency-checking errors and corrective
actions.) The error indicates either that the pages have been corrupted or that
the blob forward pointer read by the OnLine user process is no longer valid.

To understand how a forward pointer stored with a blob descriptor or with
the previous segment of blob data may become invalid, consider this
example. A program using Dirty Read isolation is able to read rows that have
been deleted provided the deletion has not yet been committed. Assume that
one OnLine server process is deleting a blob from a data row. During the
delete process, another OnLine server process operating with a Dirty Read
isolation level reads the same row, searching for the blob descriptor infor-
mation. In the meantime, the first transaction completes, the blob is deleted,
the space is freed, and a third process starts to write new blob data in the
newly freed space where the first blob used to exist. Eventually, when the
second OnLine server process starts to read the blob data at the location
where the first blob had been stored, the process compares the value of the
timestamp received from the blob descriptor with the value of the timestamp
that precedes the blob data. The timestamps will not match. The blob
timestamp on the blobpage will be greater than the timestamp in the forward
pointer, indicating to the server process that the forward pointer information
it has is obsolete.

System Architecture 2-45

Managing Shared-Memory Resources

2-46

If a program is using Committed Read isolation, the problem just described
cannot occur since the database server does not see a row that has been
marked for deletion. However, under Committed Read, no lock is placed on
an undeleted row when it is read. BYTE or TEXT data is read in a second step,
after the row has been fetched. During this lengthy step, it is possible for
another program to delete the row and commit the deletion and for the space
on the disk page to be reused. If the space has been reused in the interim, the
blob timestamp will have been incremented and will be greater than the
timestamp in the forward pointer. In this case, the comparison will indicate
the obsolete pointer information and the inconsistency will be reported as a
part of consistency checking.

Hash Tables and the Hashing Technique

Hashing is a technique that permits rapid lookup in tables where items are
added unpredictably. Three OnLine shared-memory tables have an
associated hash table. These three tables are the lock table, the active thlspace
table, and the buffer table.

Each entry that is to be placed in any OnLine table has a unique key. If a hash
table is used, then the unique key is “hashed,” which means a specific
algorithm is used to map the keys onto a set of integers, which are the hash
values. The algorithm is selected so that the keys, once hashed, are fairly
evenly distributed over a range. The result is not a unique mapping; two
different keys may map onto the same hash value. Entries are stored by their
hash value and not solely by their unique key value.

For example, a simple hashing algorithm is “divide the key value by 100 and
use the remainder.” With this algorithm, you could expect 100 different hash
values equal to each possible remainder, from 0 to 99. Each of these hash
values would correspond to an entry in the hash table.

To locate an item in the table, the item key is passed through the hashing
algorithm and its hash value is computed. Using this hash value, the entry at
that location in the hash table is examined.

Each hash-table entry contains a pointer to entries in the associated table
(lock, tbispace, or user) with the corresponding hash value. Multiple entries
with the same hash value are chained together in a linked list.

IBM Informix OnLine Database Server Administrator's Guide

Shared-Memory Header

OnLine compares the item key with the key value it is searching for. If the
values match, the item is located. If not, each item in the linked list is
examined in succession until the item is found or the search is ended.

Figure 2-6 illustrates a hashing technique that uses an algorithm that looks at
the first letter of the key value.

Figure 2-6
Hash algorithm Hash-table entries Linked list of entries el:rlspﬁ::;glz
A with same hash value hashing technique
uses an algorithm
I that looks at the
Key value F-L Hash value :/V first letter of the key
e /v \‘ value.
A W-Q ?‘ A
RT X Nguyen
u-Z

Shared-Memory Header

The shared-memory header contains a description of the size of all other
structures in OnLine shared memory, including internal tables and the
OnLine buffer pool. (The tbstat display header contains the size of shared
memory, expressed in kilobytes.)

The shared-memory header also contains pointers to the location of these
structures. When a user process first attaches to shared memory, it reads
address information in the shared-memory header for directions to all other
structures.

The size of the shared-memory header is about one kilobyte, although the
size varies, depending on the machine platform. The administrator cannot
tune the size of the header.

System Architecture 2-47

Shared-Memory Internal Tables

2-48

The header also contains the OnLine “magic number,” which is used to
synchronize user processes. Each OnLine release is assigned a magic number.
In addition, the same magic number is contained within the user process
code. Whenever a user process attempts to attach to shared memory, these
magic numbers are compared. If they are not compatible, an error is returned.
The magic-number check ensures that the database server processes are
compatible.

Shared-Memory Internal Tables

OnLine shared memory contains nine internal tables that track shared-
memory resources. (Refer to Figure 2-5 on page 2-40.) Three of these nine
tables are paired with hash tables. Each of the nine is described next.

OnLine Buffer Table

The buffer header table tracks the address and status of the individual buffers
in the shared-memory pool. When a buffer is used, it contains an image of a
data or index page from disk.

The buffer header table contains the following control information, which is
needed for buffer management:

» Buffer status
Buffer status is described as empty, unmodified, or modified. An
unmodified buffer contains data, but this data can be overwritten. A
modified, or dirty, buffer contains data that must be written to disk
before it can be overwritten.

= User processes currently accessing the buffer
The list of user processes is stored as a bit map. Each user sharing the
buffer accounts for one of the bits set in the bit map and increments
the buffer’s shared-user count, which is stored separately.

= Current lock-access level
Buffers receive lock-access levels depending on the type of operation
the user process is executing. OnLine supports three buffer lock-
access levels: shared, promotable (update), and exclusive.

IBM Informix OnLine Database Server Administrator's Guide

Shared-Memory Internal Tables

= User processes waiting for the buffer
Each buffer header maintains a list of the user processes that are
waiting for the buffer and the lock-access level that each waiting
process requires.

Each OnLine buffer is represented as one entry in the buffer header table.
Each entry in the buffer header table occupies 54 bytes.

The number of entries in the buffer header hash table is based on the number
of allocated buffers. The maximum number of hash values is the largest
power of 2 that is less than the value of BUFFERS.

Each entry in the buffer hash table occupies 16 bytes.

The minimum number of OnLine buffers is based on the number of OnLine
user processes (specified as USERS in the configuration file). You must
allocate at least four buffers per user process. The maximum number of
allocated buffers is 32,000.

OnLine Chunk Table

The chunk table tracks all chunks in the OnLine system. If mirroring has been
enabled, an identical mirror chunk table is created when shared memory is
initialized. The mirror chunk table tracks all mirror chunks. If mirroring is
not enabled, the mirror chunk table is not created.

The chunk table in shared memory contains information that enables OnLine
to locate chunks on disk. This information includes the chunk number and
the next chunk in the dbspace. Flags also describe chunk status: mirror or
primary; offline, online, or recovery mode; and whether this chunk is part of
a blobspace.

The maximum number of entries in the chunk table is equal to the value of
CHUNKS, as specified in the configuration file.

Refer to page 3-70 for information about monitoring the chunks using
tbstat -d and tbstat -D.

The maximum number of chunks that can exist within an OnLine configu-
ration might be operating-system dependent. The maximum value is the
lesser of two values:

System Architecture 2-49

Shared-Memory Internal Tables

2-50

= The number of chunk entries (pathnames) that can fit on an OnLine
page

= The operating-system value of maximum number of open files per
process, minus 6

Refer to page 2-93 for instructions on calculating the number of chunk entries
per OnLine page.

OnLine Dbspace Table

The dbspace table tracks both dbspaces and blobspaces in the OnLine
system.

The dbspace table information includes the following information about each
dbspace in the OnLine configuration:

= Dbspace number

= Dbspace name and owner

= Dbspace mirror status (if mirrored or not)

= Date and time the dbspace was created

If the space is a blobspace, flags indicate the medium where the blobspace is
located, either magnetic or removable.

The maximum number of entries in the dbspace table is equal to the value of
DBSPACES, the maximum number of dbspaces permitted in OnLine, as
specified in the configuration file.

Each entry in the dbspaces table occupies 46 bytes.

Refer to page 3-75 for information about monitoring dbspaces using tbstat -d
and tbstat -D.

The maximum number of dbspaces plus blobspaces that can exist within an
OnLine configuration is the number of chunks that can exist within this
configuration, since each dbspace requires at least one chunk.

The maximum number of chunks that can exist within a configuration might
be operating-system dependent. Refer to page 2-49 for general information
about the maximum number of chunks or to page 2-93 for specific infor-
mation about calculating the maximum value.

IBM Informix OnLine Database Server Administrator's Guide

Shared-Memory Internal Tables

The minimum value of DBSPACES is 1, representing the root dbspace.

OnLine Latch Table

The latch table is not a table in the same sense as other tables, but it functions
in a similar manner to track all latches in the OnLine system. Refer to

page 2-41 for a detailed discussion of how OnLine uses latches to control and
manage modifications to OnLine shared memory.

The number of latch entries is equal to the number of shared-memory
resources configured for the OnLine system. As OnLine administrator, you
cannot modify the number of latches.

You can obtain information about latches from the tbstat -s output. You can
use the user process information from the tbstat -u output to determine if a
user process is holding a latch.

OnLine Lock Table

The lock table represents the pool of available locks. Each entry in the lock
table represents one lock. A single transaction can own multiple locks. A
single user process is limited to 32 concurrent table locks. The lock table
includes an associated hash table.

When an entry in the lock table is used, a lock is created. The information
stored in the table describes the lock. The lock description includes the
following four items:

= The address of the user process that owns the lock

= The type of lock (exclusive, update, shared, byte, or intent)

= The page and/or rowid that is locked

= The tblspace where the lock is placed
The number of entries in the lock table is equal to the maximum number of

locks in this OnLine system, specified as LOCKS in the configuration file. Each
entry in the lock table occupies 32 bytes.

Refer to IBM Informix Guide to SQL: Tutorial for an explanation of locking and
SQL statements. Refer to page 2-38 for a detailed explanation of the effect of
locks on buffer management. Refer to page 7-88 for information on
monitoring locks with tbstat -k.

System Architecture 2-51

Shared-Memory Internal Tables

2-52

A byte lock is only generated if you are using VARCHAR data types. The byte
lock exists solely for rollforward and rollback execution, so you must be
working in a database that uses logging. Byte locks only appear in tbstat -k
output if you are using row-level locking; otherwise, they are merged with
the page lock.

The upper limit for the maximum number of locks (specified as LOCKS in the
configuration file) is 256,000. The lower boundary for LOCKS is the number
of user processes (the current value of USERS) multiplied by 20.

The number of entries in the lock hash table is based on the number of entries
in the locks table (specified as LOCKS in the configuration file). The maximum
number of hash values is the largest power of 2 that is less than the value
specified by the expression (LOCKS divided by 16). Each entry in the lock
hash table occupies 12 bytes.

OnLine Page-Cleaner Table

The page-cleaner table tracks the state and location of each of the page-
cleaner daemons, tbpgcl, that was specified during configuration.

The page-cleaner table always contains 32 entries, regardless of the number
of page cleaners specified by CLEANERS in your configuration file.

Each entry in the page-cleaner table occupies 20 bytes.

The upper limit for the maximum number of page cleaners (specified as
CLEANERS in the configuration file) is 32. The lower boundary for CLEANERS
is 0.

When CLEANERS is set to 0, the tbinit daemon assumes responsibility for
page cleaning. When CLEANERS is set to any value greater than 0, that is the
number of tbpgcl daemon processes managed by thinit.

OnLine Tblspace Table

The tblspace table tracks all active tblspaces in the OnLine system. An active
tbispace is currently open to any OnLine user process. The count of active
tbispaces includes database tables, temporary tables, and internal control
tables, such as system catalog tables. Each active table receives one entry in
the active tblspace table. Entries in the tblspace table are tracked in an
associated hash table.

IBM Informix OnLine Database Server Administrator's Guide

Shared-Memory Internal Tables

Each tblspace table entry includes header information about the tbispace, the
tblspace name, and pointers to the tbispace tblspace in the root dbspace on
disk. (Do not confuse the shared-memory active tblspace table with the
tbispace tblspace, which is described on page 2-104.)

The number of entries in the tblspace table is equal to the maximum number
of open tblspaces permitted in this OnLine system, specified as TBLSPACES in
the configuration file. If a user process attempts to open an additional table
after all entries are used, an error is returned. A single user process is limited
to 32 concurrent table locks.

Each entry in the tbispace table occupies 232 bytes.
Refer to page 3-85 for information about monitoring tblspaces using tbstat -t.

The upper limit for the maximum number of tbispaces (specified as
TBLSPACES in the configuration file) is 32,000. The lower boundary for
TBLSPACES is the number of user processes (specified as USERS in the config-
uration file) multiplied by 10. The minimum value for TBLSPACES is 10 per
user. This minimum also must be greater than the maximum number of
tables in any one database, including the system catalog tables, plus 2. (This
minimum is required to permit OnLine to execute a DROP DATABASE
statement.)

The default value is 200.

The number of entries in the tblspace hash table is based on the number of
allocated tblspaces (specified as TBLSPACES in the configuration file). The
maximum number of hash values is the largest power of two that is less than
the value specified by the expression (TBLSPACES divided by 4).

Each entry in the lock hash table occupies four bytes.

Refer to page 2-46 for an explanation of the hash table.

System Architecture 2-53

Shared-Memory Internal Tables

2-54

OnLine Transaction Table
The transaction table tracks all transactions in the OnLine system.

The transaction table specifically supports the X/Open environment, in which
the concept of a global transaction replaces the traditional UNIX architecture
of one application tool process associated with one database server process.
In a global transaction, more than one database server process can be enlisted
to perform work on behalf of a single application tool process. That is, the
transaction becomes the central structure instead of the user process. Support
for the X/Open environment requires IBM Informix TP/XA.

Within the OnLine environment, the concept of transaction has been added
to the traditional UNIX architecture. Each OnLine transaction is considered to
be associated with a single user process. Some information that had been
tracked in the user table in earlier releases is now tracked in the transaction
table. Tracking information derived from both the transaction and user tables
appears in the tbstat -u display, although the information is organized a little
differently. For further information about using the tbstat -u display to track
transactions, refer to page 9-58.

OnLine User Table
The user table tracks all processes that attach to shared memory.

Every OnLine database server maintains at least two entries in the user table
while running. The first entry in the user table is reserved for tbinit, the
master daemon. The second entry in the user table is reserved for tbundo, the
daemon process that is responsible for rolling back transactions associated
with a process that has died prematurely or has been killed. The tbundo
daemon is forked from tbinit. In UNIX systems that do not allow processes to
be renamed, the tbundo daemon appears as a second tbinit daemon.

In the user table, and in tbstat -u output, the process ID for the tbundo
daemon displays as 0 until the process is actually needed. When tbundo is
started, the actual user process ID is used.

The nextentries in the user table belong to the page-cleaner daemons, tbpgcl,
if any daemons are specified.

The database server processes currently running are the next entries.

IBM Informix OnLine Database Server Administrator's Guide

Shared-Memory Buffer Pool

The last available entry slot in the user table is always reserved for a
tbmonitor process, regardless of whether any other tbomonitor processes are
currently running.

The number of entries in the user table is equal to the maximum number of
users permitted on this OnLine system, specified as USERS in the configu-
ration file. If an additional user process attempts to attach to shared memory,
an error is returned.

Each entry in the user table occupies 102 bytes.

The upper limit for the maximum number of users (specified as USERS in the
configuration file) is 1000. The lower boundary for the value of USERS is the
number of page cleaners (specified as CLEANERS in the configuration file)
plus 4, plus 1 if mirroring is enabled. The four minimum user entries are
reserved for tbinit, tbundo, tbmonitor, and an entry for an administrative
user.

Shared-Memory Buffer Pool

The OnLine buffer pool contains two types of buffers:

= Regular buffers
= Big buffers

If data pages are modified, entries are made in two other shared-memory
buffers that function solely to ensure the physical and logical consistency of
OnLine data:

= Physical log buffer
= Logical log buffer

The functions of the physical and logical log buffers are described on
page 2-63 and page 2-66, respectively.

System Architecture 2-55

Shared-Memory Buffer Pool

2-56

Regular Buffers

The regular buffers store dbspace pages read from disk. The status of the
regular buffers is tracked through the buffer header table. Within shared
memory, regular buffers are organized into LRU buffer queues. (Refer to
page 2-57 for further information about the LRU queues.) Buffer allocation is
managed through the use of latches and lock access information. Buffer infor-
mation is available through four options of thstat:

= -band -B options display general buffer information.
= -Rdisplays LRU queue statistics.

= -Xdisplays information about OnLine user processes that are
sharing or waiting for buffers.

Each regular buffer is the size of one OnLine page, specified as BUFFSIZE in
the configuration file. In general, OnLine performs I/0 in full-page units, the
size of a regular buffer. The two exceptions are 170 performed from big
buffers and 170 performed from blobspace buffers. (Refer to page 2-78 for
further information about blobspace buffers.)

Big Buffers

For every 100 regular buffers, OnLine allocates one additional big buffer.
OnLine creates at least one big buffer, even if BUFFERS is less than 100. A big
buffer is a single buffer that is the size of eight pages.

The function of the big buffers is to increase performance on large writes and
reads. For example, OnLine tries to use a big buffer if it is writing a dbspace
blob into shared memory or performing a series of sequential reads. After
disk pages are read into the big buffer, they are immediately allocated to
regular buffers in the buffer pools. The big buffers are also used in sorted
writes and during checkpoints, if possible. (Refer to page 2-75 for more
details about sorted and chunk writes.)

Multiple big buffers cannot be combined for contiguous 170 reads that are
greater than eight pages. The number of big-buffer reads is displayed as part
of the tbstat -P output.

IBM Informix OnLine Database Server Administrator's Guide

OnLine LRU Queues

OnLine LRU Queues

Each regular buffer is tracked through several linked lists of pointers to the
buffer header table. These linked lists are the least-recently used (LRU) queues.

When OnLine is initialized, the configuration parameter LRUS specifies the
number of LRU queues or lists to create. The minimum number of LRU
gueues is three. The maximum number of LRU queues is the smaller of two
values: (USERS divided by 2) or 8. The default number of queues created is
equal to the number of USERS divided by 2 and rounded up, up to the value 8.
(Refer to page 5-19 for further information about setting the value of LRUS to
improve performance.)

Each LRU queue is actually a pair of linked lists:

= One list tracks free or unmodified pages in the queue.
= One list tracks modified pages in the queue.

The free/unmodified page list is referred to as the FLRU queue of the queue
pair, and the modified page list is referred to as the MLRU queue. The two
separate lists eliminate the need to search a queue for a free or unmodified
page. Figure 2-7 illustrates the structure of the LRU queues.

Figure 2-7

LRU queues The structure of the

FLRU 1

LRU queues

Least-recently used Most-recently used

Pointer to a modified page in the
buffer header table

Pointer to an empty page in the
buffer header table

Pointer to an unmodified page in
the buffer header table

System Architecture 2-57

LRU Queues and Buffer Pool Management

2-58

LRU Queues and Buffer Pool Management

Before processing begins, all page buffers are empty. Every page buffer is
associated with a buffer header in the buffer table. Every buffer header is
represented by an entry in one of the FLRU queues. The buffer headers are
evenly distributed among the FLRU queues. (Refer to page 2-57 for more
information about the FLRU and MLRU queues.)

When a user process needs to acquire a buffer, OnLine randomly selects one
of the FLRU queues and uses the “oldest” or “least-recently used” entry in the
list. If the least-recently used page can be latched, that page is removed from
the queue.

If the FLRU queue is locked and the end page cannot be latched, OnLine
randomly selects another FLRU queue.

If a user process is searching for a specific page currently stored in shared
memory, it obtains the page’s LRU queue location from the control infor-
mation stored in the buffer table.

After an executing process finishes its work, it releases the buffer. If the page
has been modified, the buffer is placed at the “most-recently used” end of an
MLRU queue. If the page was read but not modified, the buffer is returned to
the FLRU queue at its “most-recently used” end.

You can monitor LRU status by executing the command tbstat -R.

IBM Informix OnLine Database Server Administrator's Guide

LRU Queues and Buffer Pool Management

LRU_MAX_DIRTY

Periodically, the modified buffers in the MLRU queue are written (flushed) to
disk by the page-cleaner daemons. You can specify the point at which
cleaning begins.

The LRU_MAX_DIRTY configuration parameter limits the number of page
buffers that can be appended to the MLRU queues. The default value of
LRU_MAX_DIRTY is 60, meaning that page cleaning begins when 60 percent
of the total number of buffers are modified. (In practice, page cleaning begins
under several conditions, only one of which is when an MLRU queue reaches
the specific number that represents this 60 percent limitation. Refer to

page 2-73 for further information about initiating page cleaning.) The
following example shows how the value of LRU_MAX_DIRTY is applied to the
buffer pool to arrive at the maximum number of page buffers in an MLRU
queue:

BUFFERS speci fied as 8000
LRUS specified as 8
LRU_MAX_DI RTY specified as 60

Cl eani ng begi ns when the nunber of buffers in the MLRU queue is
equal to (Total buffers/LRU queues) nultiplied by LRU MAX DI RTY
per cent age.

Buffers in M.RU
Buffers in MLRU
Buffers in M.RU

(8000/8) * 60%
1000 * 0. 60
600

LRU_MIN_DIRTY

You can also specify the point at which MLRU cleaning can end. The
LRU_MIN_DIRTY configuration parameter specifies the acceptable
percentage of modified buffers in an MLRU queue. The default value of
LRU_MIN_DIRTY is 50, meaning that page cleaning is no longer required
when 50 percent of the total number of buffers are modified. In practice, page
cleaning can continue beyond this point as directed by the tbinit daemon
process.

System Architecture 2-59

How a User Process Acquires a Buffer

2-60

1.
2.

The following example shows how the value of LRU_MIN_DIRTY is applied
to the buffer pool to arrive at the number of page buffers in an MLRU queue
that, when reached, can signal a suspension of page cleaning:

BUFFERS speci fied as 8000
LRUS specified as 8
LRU M N_DI RTY specified as 50

Nunber of buffers in the MLRU queue when cl eani ng can be suspended
is equal to (Total buffers/Nunber of LRU queues) multiplied by the
percent age specified by LRU M N_DI RTY.

Buffers in M.RU
Buffers in MLRU
Buffers in M.RU

(8000/8) * 50%
1000 * 0.50
500

Refer to page 2-74 for a description of data buffer flushing. Refer to page 5-19
for more details about tuning the values of LRU_MAX_DIRTY and
LRU_MIN_DIRTY.

How a User Process Acquires a Buffer

OnLine shared-lock buffering allows more than one OnLine user process to
simultaneously access the same buffer in shared memory. OnLine provides
this concurrency without a loss in process isolation by using buffer locks and
three categories of lock access (share, update, and exclusive).

The buffer-acquisition procedure comprises seven steps:

Identify the data requested by physical page number.

Determine the level of lock access needed by the user process for the
requested buffer.

Attempt to locate the page in shared memory.

If the page is not in shared memory, locate a buffer in an FLRU queue
and read the page in from disk.

Proceed with processing, locking the buffer if necessary.

After the user process is finished with the buffer, release the lock on
the buffer.

Wake waiting processes with compatible lock access types, if any
exist.

IBM Informix OnLine Database Server Administrator's Guide

How a User Process Acquires a Buffer

Step 1: Identify the Data

OnLine user processes request a specific data row by rowid. (Refer to
page 2-123 for a definition of rowid.) OnLine translates the logical rowid into
a physical page location. The user process searches for this page.

Step 2: Determine Lock-Access Level

Next OnLine determines the level of lock access required by the requesting
user process: share, update, or exclusive. (Refer to page 2-38 for further infor-
mation about buffer locks.)

Step 3: Locate the Page in Memory

The user process first attempts to locate the requested page in shared
memory. To do this, it tries to acquire a latch on the hash table associated with
the buffer table. If the process can acquire the latch, it searches the hash table
to see if an entry matches the requested page. If it finds an entry for the page,
it releases the latch on the hash table and tries to acquire the latch on the
buffer header entry in the buffer table.

With access to the buffer header, the requesting process adds its user process
ID to the user list bit map for the buffer and increments the shared-user count
by 1.

The user process tests the current lock-access level of the buffer.

If the levels are compatible, the requesting user process gains access to the
buffer. If the current lock-access level is incompatible, the requesting process
puts itself on the user wait list of the buffer. The buffer state, unmodified or
modified, is irrelevant; even unmodified buffers can be locked.

For further information about the entry stored in the buffer table, refer to
page 2-48.

System Architecture 2-61

How a User Process Acquires a Buffer

2-62

Step 4: Read the Page in from Disk

If the requested page must be read from disk, the user process first locates a
usable buffer in the FLRU queues. (Refer to page 2-57.) OnLine selects an
FLRU queue at random and tries to acquire the latch associated with the
queue. If the latch can be acquired, the buffer at the “least-recently used” end
of the queue is used. If another process holds the FLRU queue latch, the user
process tries to acquire a latch associated with another FLRU queue.

After a usable buffer is found, the buffer is temporarily removed from the
linked list that is the FLRU queue. The user process acquires a latch on the
buffer table hash structure and creates an entry in the buffer table as the page
is read from disk into the buffer.

Steps 5-7: Lock Buffer, Release Lock, and Wake Waiting Processes

If the user process reads the buffer without modifying the data, it releases the
buffer as unmodified. If the user process had acquired the buffer with an
update or exclusive lock, other user processes may be waiting to read the
buffer.

The release of the buffer occurs in steps. First, the releasing user process
acquires a latch on the buffer table that enables it to modify the buffer entry.

Next, it looks to see if other user processes are sleeping or waiting for this
buffer. If so, the releasing user process wakes the first process in the wait-list
gueue that has a compatible lock-access type. The waiting processes are
gueued according to priorities that encompass more than just “first-come,
first served” hierarchies. (Otherwise, user processes waiting for exclusive
access could wait forever.)

If no user process in the wait-list queue has a compatible lock-access type,
any user process waiting for that buffer can receive access.

If no process is waiting for the buffer, the releasing process tries to release the
buffer to the FLRU queue where it was found. If the latch for that FLRU queue
is unavailable, the process tries to acquire a latch for a randomly selected
FLRU queue. When the FLRU queue latch is acquired, the unmodified buffer
is linked to the “most-recently used” end of the queue.

After the buffer is returned to the FLRU queue or the next user process in the
wait list is awakened, the releasing process removes itself from the user list
bit map for the buffer and decrements the shared-user count by one.

IBM Informix OnLine Database Server Administrator's Guide

Physical Log Buffer

If the user process intends to modify the buffer, it acquires a latch on the
buffer and changes the buffer lock-access type to exclusive.

A copy of the “before-image” of the page is needed for data consistency. The
user process determines if a “before-image” of this page was written to either
the physical log buffer or the physical log since the last checkpoint. If not, a
copy of the page is written to the physical log buffer.

The data in the page buffer is modified, including the timestamps on the
page. When the modification is complete, the latch on the buffer is released.

If any transaction records are required for logging, those records are written
to the logical log buffer.

After the latch on the buffer is released, the user process is ready to release
the buffer. First, the releasing user process acquires a latch on the buffer table
that enables it to modify the buffer entry.

The releasing process updates the timestamp in the buffer header so that the
timestamp on the buffer page and the timestamp in the header match.

Statistics describing the number and types of writes performed by this user
process are updated.

The lock is released as described in the previous section, but the buffer is
appended to the MLRU queue associated with its original queue set. (Refer to
page 2-57). If the latch for that MLRU queue is unavailable, the process tries
to acquire a latch for a randomly selected MLRU queue. When the MLRU
queue latch is acquired, the modified buffer is linked to the “most-recently
used” end of the queue.

Physical Log Buffer

OnLine uses the shared-memory physical log buffer as temporary storage of
“before-images” of disk pages. Before a disk page can be modified, a “before-
image” of the page on disk must already be stored in the physical log on disk
or one must be written to the physical log buffer. In the latter case, the
physical log buffer must be flushed to disk before the modified page can be
flushed to disk. Writing the “before-image” to the physical log buffer and
then flushing the buffer page to disk is illustrated in Figure 2-8 on page 2-64.
Both the physical log buffer and the physical log maintain the physical and
logical consistency of OnLine data.

System Architecture 2-63

Physical Log Buffer

Double Buffering

“before-images.”

Refer to page 2-151 for further information about the physical log.

The physical log buffer is actually two buffers. The size of each buffer is
specified (in kilobytes) by the configuration file parameter PHYSBUFF. Double
buffering permits user processes to write to the active physical log buffer
while the other buffer is being flushed to the physical log on disk. A pointer
in shared memory indicates the current buffer to which processes write their

Physical log buffers

Current physical log
buffer (now filling)

Physical log buffer
(flushing)

Writes performm

page-cleaner daemons

Figure 2-8
The physical log
buffer and its

relation to the
Writes performed by OnLine physical log on disk

user processes

Physical log files

2-64

Causes of Flushing

Three events cause the physical log buffer to flush:

= One of the physical log buffers becomes full.
= A modified page in shared memory must be flushed.
= A checkpoint occurs.

IBM Informix OnLine Database Server Administrator's Guide

Physical Log Buffer

The contents of the physical log buffer must always be flushed to disk before
any data buffers. This rule is required for fast recovery. (Refer to page 4-39 for
a definition of fast recovery. Refer to page 2-74 for a description of physical
log buffer flushing when it is prompted by the need to flush the shared-
memory buffer pool. Refer to page 2-72 for a description of the checkpoint
procedure.)

Flushing a Full Buffer

Buffer flushing that results from the physical log buffer becoming full
proceeds as follows.

When a user process needs to write a page to the physical log buffer, it
acquires the latch associated with the physical log buffer and the latch
associated with the physical log on disk. If another user process is writing to
the buffer, the incoming user process must wait for the latches to be released.

After the incoming user process acquires the latches, before the write, the
user process first checks the physical log for fullness. If the log is more than
75 percent full, the user process sets a flag to request a checkpoint, performs
the write to the physical log buffer, and then releases the latch. The check-
point cannot begin until all shared-memory latches, including this one, are
released.

If the log is less than 75 percent full, the user process compares the incre-
mented page counter in the physical log buffer header to the buffer capacity.
If this one-page write does not fill the physical log buffer, the user process
reserves space in the log buffer for the write and releases the latch. Any user
process waiting to write to the buffer is awakened. At this point, after the
latch is released, the user process writes the page to the reserved space in the
physical log buffer. This sequence of events eliminates the need to hold the
latch during the write and increases concurrency.

If this one-page write fills the physical log buffer, flushing is initiated as
follows.

System Architecture 2-65

Logical Log Buffer

First, the page is written to the current physical log buffer, filling it. Next, the
user process latches the other physical log buffer. The user process switches
the shared-memory current-buffer pointer, making the newly latched buffer
the current buffer. The latch on the physical log on disk and the latch on this
new, current buffer are released, which permits other user processes to begin
writing to the new current buffer. Last, the full buffer is flushed to disk and
the latch on the buffer is released.

Logical Log Buffer

OnLine uses the shared-memory logical log buffer as temporary storage of
records that describe modifications to OnLine pages. From the logical log
buffer, these records of changes are written to the current logical log file on
disk, and eventually to the logical log backup tapes. Refer to page 2-153 for a
description of the functions of the logical log files and their contents.

Triple Buffering

There are three logical log buffers. Each buffer is the size (expressed in
kilobytes) that is specified by the configuration file parameter LOGBUFF. This
triple buffering permits user processes to write to the active buffer while one
of the other buffers is being flushed to disk. Flushing might not complete by
the time the active buffer fills. Writing then begins in the third buffer. A
shared-memory pointer indicates the current buffer.

2-66 IBM Informix OnLine Database Server Administrator's Guide

Logical Log Buffer

Logical log buffers

Current logical log Writes performed by
‘ buffer (now filling) ‘ ‘ OnLine user processes

Logical log buffer
(ready to accept data)

Logical log buffer
(flushing)

Writes perform
by page-cleaner I Current logical log file I
daemons

Free logical log file

Free logical log file

Figure 2-9

The logical log
buffer and its
relation to the
logical log files on
disk

System Architecture 2-67

Logical Log Buffer

Buffer Contents

Logical log records are written continuously during OnLine operation. Even
if a database is not created with transaction logging, administrative changes
(such as adding a dbspace or a chunk) and data definition statements, such
as CREATE TABLE or DROP TABLE, are logged. (SELECT statements are never
logged.) The logical log files contain five types of records:

= SQL data definition statements for all databases

= SQL data manipulation statements for databases that were created
with logging

= Record of a change to the logging status of a database

= Record of a checkpoint

= Record of a change to the configuration

(Refer to page 2-155 for further information about the factors that influence
the number and size of logical log records that are written to the logical log
files.)

Causes of Flushing
Three events cause the logical log buffer to flush:

= One of the logical log buffers becomes full.

= A transaction is committed within a database that uses unbuffered
logging.
= A checkpoint occurs.

Refer to page 2-70 for a definition of a checkpoint. Refer to page 2-72 for a
description of the checkpoint procedure.

If a transaction is committed in a database with unbuffered logging, the
logical log buffer is immediately flushed. This might appear to be a source of
some disk space waste. Typically, many logical log records are stored on a
single page. But because the logical log buffer is flushed in whole pages, even
if only one transaction record is stored on the page, the whole page is flushed.
In the worst case, a single COMMIT logical log record (“commit work™) could
occupy a page on disk, and all remaining space on the page would be unused.

2-68 IBM Informix OnLine Database Server Administrator's Guide

Logical Log Buffer

Note, however, that this cost of unbuffered logging is minor compared to the
benefits of ensured data consistency. (Refer to page 3-34 for further infor-
mation about the benefits of unbuffered logging compared to buffered
logging.)

Flushing a Full Buffer

When a user process needs to write a record to the logical log buffer, it
acquires the latch associated with the logical log buffer and the latch
associated with the current logical log on disk. If another user process is
writing to the buffer, the incoming user process must wait for the latches to
be released.

After the incoming user process acquires the latches, before the write, the
user process first checks how much logical log space is available on disk. If
the percentage of used log space is greater than the long transaction high-
water mark (specified by LTXHWM), the user process wakes the tbinit
daemon to check for a long transaction condition. (Refer to page 2-158 for a
definition of a long transaction and its effect on the logical logs.)

If there is no long-transaction condition, the user process compares the
available space in the logical log buffer with the size of the record to be
written. If this write does not fill the logical log buffer, the record is written,
latches are released, and any user process waiting to write to the buffer is
awakened.

If this write fills the logical log buffer exactly, flushing is initiated as follows:

1. The user process latches the next logical log buffer. The user process
then switches the shared-memory current-buffer pointer, making the
newly latched buffer the current buffer.

2. The user process writes the new record to the new current buffer. The
latch on the logical log on disk and the latch on this new, current
buffer are released, permitting other user processes to begin writing
to the new current buffer.

3. Thefulllogical log buffer is flushed to disk and the latch on the buffer
is released. This logical log buffer is now available for reuse.

System Architecture 2-69

OnLine Checkpoints

2-70

OnLine Checkpoints

The term checkpoint refers to the point in OnLine operation when the pages
on disk are synchronized with the pages in the shared-memory buffer pool.
When a checkpoint completes, all physical operations are complete and
OnLine is said to be physically consistent.

Outlined below are the main events that occur during a checkpoint. Refer to
page 2-72 for a detailed description of what happens during a checkpoint.

Main Events During a Checkpoint

= Physical log buffer is flushed to the physical log.

= Modified pages in the buffer pool are flushed to disk. Flushing is
performed as a chunk write.

s Checkpoint record is written to the logical log buffer.

= Physical log on disk is logically emptied (current entries can be
overwritten).

» Logical log buffer is flushed to current logical log file on disk.

Initiating a Checkpoint

Any user process can initiate a check to determine if a checkpoint is needed.
A checkpoint is initiated under any one of four conditions;

= The default checkpoint interval has elapsed (a default checkpoint
frequency is specified by the configuration parameter CKPTINTVL)
and one or more modifications have occurred since the last
checkpoint.

= The physical log on disk becomes 75 percent full.

= OnLine detects that the next logical log file to become current
contains the most-recent checkpoint record.

= The OnLine administrator initiates a checkpoint from the
DB-Monitor, Force-Ckpt menu or from the command line using
tbmode -c.

IBM Informix OnLine Database Server Administrator's Guide

OnLine Checkpoints

One reason an administrator might want to initiate a checkpoint would be to
force a new checkpoint record in the logical log. Forcing a checkpoint would
be a step in freeing a logical log file with status U- L. (Refer to page 3-41.)

Fast Recovery

A checkpoint is critical to the operation of the fast-recovery process. (Refer to
page 4-39.) As fast recovery begins, OnLine data is brought to physical
consistency as of the last checkpoint by restoring the contents of the physical
log.

During fast recovery, OnLine reprocesses the transactions contained in the
logical logs, beginning at the point of the last checkpoint record and
continuing through all the records contained in the subsequent logical log(s).

After fast recovery completes, the OnLine data is consistent up through the
last completed transaction. That is, all committed transactions recorded in
the logical logs on disk are retained; all incomplete transactions (transactions
with no COMMIT WORK entry in the logical logs on disk) are rolled back.

Archive Checkpoints

Checkpoints that occur during an online archive may require slightly more
time to complete. The reason is that the archiving procedure forces pages to
remain in the physical log until the tbtape process (that performs the archive)
has had a chance to write the “before-image” pages to the archive tape. This
must be done to ensure that the archive has all timestamped pages needed to
complete the archive. (Refer to page 4-30 for more information about what
happens during online archiving.)

System Architecture 2-71

What Happens During a Checkpoint

2-72

What Happens During a Checkpoint

The checkpoint procedure is prompted by any one of four conditions (refer
to page 2-70). This description begins when the checkpoint-requested flag is set
by an OnLine user process after one of the four conditions is found to exist.

The checkpoint-requested flag wakes the tbinit daemon if it is not already
awake. Once this flag is set, OnLine user processes are prevented from
entering portions of code that are considered critical sections. (Refer to
page 2-27.) User processes that are within critical sections of code are
permitted to continue processing.

After all processes have exited from critical sections, tbinit resets the shared-
memory pointer from the current physical log buffer to the other buffer and
flushes the buffer. After the buffer is flushed, tbinit updates the shared-
memory structure that contains a timestamp indicating the most-recent point
at which the physical log buffer was flushed.

Next, tbinit or tbpgcl (page-cleaner) daemons flush all modified pages in the
shared-memory pool. This flushing is performed as a chunk write. (Refer to
page 2-77 for further information about chunk writes.)

After the modified pages have been written to disk, tbinit writes a checkpoint-
complete record in the logical log buffer. After this record is written, the logical
log buffer is flushed to disk.

The tbinit daemon next begins writing all configuration and archive infor-
mation to the appropriate reserved page, whether or not changes have
occurred since the last checkpoint. (Refer to page 2-95 for more information
about the reserved pages.)

When dbspaces, primary chunks, or mirror chunks are added or dropped
from OnLine, the changes are recorded in descriptor tables in shared
memory. If changes have occurred since the last checkpoint, tbinit writes the
descriptor tables from shared memory to the appropriate reserved page in
the root dbspace. Otherwise, tbinit ignores the reserved pages that describe
the dbspaces, primary chunks, and mirror chunks. The tbinit daemon writes
all checkpoint statistics to the appropriate reserved page in the root dbspace.
Next, tbinit looks for logical log files that can be freed (status U- L) and frees
them. (Refer to page 3-41.) Last, the checkpoint-complete record is written to
the OnLine message log.

IBM Informix OnLine Database Server Administrator's Guide

When the Daemons Flush the Buffer Pool

When the Daemons Flush the Buffer Pool

Buffer flushing is managed by the tbinit master daemon and performed by
tbinit or by one or more tbpgcl (page-cleaner) daemons. (If no tbpgcl
daemons have been configured for your OnLine server, the tbinit daemon
performs page-cleaner functions.)

Flushing the modified shared-memory page buffers, the physical log buffer,
and the logical log buffer must be synchronized with page-cleaner activity
according to specific rules designed to maintain data consistency.

The overriding rule of buffer flushing is this: first flush the “before-images”
of modified pages to disk before you flush the modified pages themselves.

In practice, this means that the first physical log buffer is flushed and then the
buffers containing modified pages from the shared-memory buffer pool.
Therefore, even when the need to flush a shared-memory page buffer arises
because that buffer is needed by another user process (a foreground write,
refer to page 2-75), the page buffer cannot be flushed until it is verified that
the “before-image” of the page has already been written to disk. If this cannot
be verified, the physical log buffer must be flushed first, before the single
shared-memory page buffer is flushed. (Refer to page 2-74 for more infor-
mation about how this sequence of events is enforced.)

Buffer-pool flushing is initiated under any one of four conditions:
= Arequirement for page cleaning, determined by the value of
LRU_MAX_DIRTY (refer to page 2-58)

= Aneed to flush a full logical log buffer or physical log buffer (refer to
page 2-63 and page 2-66, respectively)

= Aneed to flush the logical log buffer after a committed transaction in
an unbuffered database (refer to page 2-66)

= A need to execute a checkpoint (refer to page 2-70)

System Architecture 2-73

How OnLine Synchronizes Buffer Flushing

2-74

How OnLine Synchronizes Buffer Flushing

Buffer flushing occurs within the context of OnLine activity. When OnLine is
first initiated, all buffers are empty. As processing occurs, data pages are read
from disk into the buffers and user processes begin to modify these pages.
(Refer to page 2-73 for an explanation of the “before-images first” rule, which
is the reason that synchronization is necessary. In addition, page 2-73 lists the
four events that prompt buffer-pool flushing and cross-references to further
background information.)

Before a page in shared memory is modified for the first time, a copy of the
page “before-image” is written to the physical log buffer. Subsequent modifi-
cations to that page in shared memory do not result in additional “before-
images” being written to the physical log; only the first modification does so.

After each modification, a record of the change is written to the logical log
buffer if the database was created with logging or if the change affected the
database schema.

MLRU queues begin to fill with modified pages. Each modified page includes
a timestamp that describes the time at which the page was modified.

Eventually the number of modified buffers in the MLRU queues reaches
LRU_MAX_DIRTY and page cleaning begins.

The pages in the physical log buffer are always flushed to disk prior to
flushing the pages that are contained in the modified buffers in the shared-
memory buffer pool. (Refer to page 2-73.)

When page cleaning is initiated from the shared-memory buffer pool, the
daemon process performing the page cleaning must coordinate the flushing
so that the physical log buffer is flushed first.

How is this done? The answer is timestamp comparison. (Refer to page 2-44 for
a definition of a timestamp.)

Shared memory contains a structure that stores a timestamp each time the
physical log buffer is flushed. If a tbpgcl or tbinit daemon needs to flush a
page in a shared-memory buffer, the daemon process compares the
timestamp in the modified buffer with the timestamp that indicates the point
when the physical log buffer was last flushed.

IBM Informix OnLine Database Server Administrator's Guide

Write Types Describe Flushing Activity

If the timestamp on the page in the buffer pool is equal to or more recent than
the timestamp for the physical log buffer flush, the “before-image” of this
page conceivably could be contained in the physical log buffer. If this is the
case, the physical log buffer must be flushed before the shared-memory
buffer pages are flushed.

Before the tbinit daemon can flush the physical log buffer, it must acquire the
latch for the shared-memory pointer structure and reset the pointer from the
current physical log buffer to the other buffer. After the pointer is reset, the
physical log buffer is flushed.

Next, the daemon process updates the timestamp in shared memory that
describes the most-recent physical log buffer flush. The specific page in the
shared-memory buffer pool that is marked for flushing is flushed. The
number of modified buffers in the queue is compared to the value of
LRU_MIN_DIRTY. If the number of modified buffers is greater than the value
represented by LRU_MIN_DIRTY, another page buffer is marked for flushing.
The timestamp comparison is repeated. If required, the physical log buffer is
flushed again.

When no more buffer flushing is required, the page-cleaner processes
calculate a value that represents a span of time during which the cleaner
processes remain asleep. This value, referred to as snooze time, is based on the
number of pages that the cleaner processes flushed in this last active period.
(Refer to page 5-17 for further information about tuning the page-cleaning
parameters to improve OnLine performance.)

Write Types Describe Flushing Activity

OnLine provides you with some information about the specific condition
that prompted buffer-flushing activity by defining six types of OnLine writes
and keeping count of how often each write occurs:

= Sorted write

= Idle write

= Foreground write

= LRU write

s Chunk write

= Big-buffer write

System Architecture 2-75

Write Types Describe Flushing Activity

2-76

Data is always written to the primary chunk first. If a mirror chunk is
associated with the primary chunk, the write is repeated on the mirror chunk.
The write to the mirror chunk is also included in these counts.

Refer to page 5-17 for a discussion of tuning OnLine performance by
monitoring write-type statistics.

Refer to page 7-87 for information about monitoring write types (and buffer
flushing) using tbstat -F.

Sorted Write

Any OnLine process that is writing more than one page to the same disk sorts
the pages into disk sequence and writes the pages in disk-sequence order.
(The disk-sequence information is contained in the physical address of the
page, which is contained in the page header.) This technique is referred to as
a sorted write.

Sorted writes are more efficient than either idle writes or foreground writes
because they minimize head movement (disk seek time) on the disk. In
addition, a sorted write enables the page cleaners to use the big buffers
during the write, if possible. (Refer to page 2-55 for more information about
big buffers.)

Chunk writes, which occur during checkpoints, are performed as sorted
writes. (Chunk writes are the most efficient writes available to OnLine. Refer
to page 2-77.)

Idle Write

Writes that are initiated by the page cleaners are called idle writes. The page-
cleaner daemon wakes periodically and searches through the MLRU queues
to determine if the number of modified buffers is equal to or greater than the
value represented by LRU_MAX_DIRTY.

If a page cleaner determines that the buffer pool should be flushed, it marks
a page for flushing, flushes the page (after first checking to determine if the
physical log buffer must be flushed first), and then rechecks the percentage.
This process repeats until the number of modified buffers is less than the
value represented by LRU_MIN_DIRTY.

IBM Informix OnLine Database Server Administrator's Guide

Write Types Describe Flushing Activity

If OnLine is configured for more than one page-cleaner daemon process, the
LRU queues are divided among the page-cleaner daemons for more efficient
flushing.

Foreground Write

If a database server process searches through the FLRU queues and cannot
locate an empty or unmodified buffer, the server process itself marks a page
for flushing. If the server process must perform buffer flushing just to acquire
a shared-memory buffer, performance can suffer. Writes that the server
process performs are called foreground writes. Foreground writes should be
avoided. If you find that foreground writes are occurring, increase the
number of page cleaners or decrease the value of LRU_MAX_DIRTY. (Refer to
page 5-17 for more information about tuning the values of the page-cleaner
parameters.)

LRU Write

Foreground writes alert the master daemon, tbinit, that page cleaning is
needed. Once alerted, the tbinit daemon wakes the page cleaners or, if none
have been allocated in this OnLine configuration, the tbinit daemon begins
page cleaning. An LRU write occurs as a result of tbinit prompting, instead of
as a result of the page cleaners waking by themselves.

Chunk Write

Chunk writes are performed by page cleaners during a checkpoint or when
every page in the shared-memory buffer pool is modified. Chunk writes,
which are performed as sorted writes, are the most efficient writes available
to OnLine.

During a chunk write, each page cleaner is assigned to one or more chunks.
Each page cleaner reads through the buffer headers and creates an array of
pointers to pages that are associated with its specific chunk. (The page
cleaners have access to this information because the chunk number is
contained within the physical page number address, which is part of the page
header.) This sorting minimizes head movement (disk seek time) on the disk
and enables the page cleaners to use the big buffers during the write, if
possible. (Refer to page 2-55.)

System Architecture 2-77

Writing Data to a Blobspace

2-78

In addition, since database server processes must wait for the checkpoint to
complete, the page-cleaner daemons are not competing with a large number
of processes for CPU time. As a result, the page cleaners can finish their work
with less context switching.

Big-Buffer Write

Each OnLine big buffer is the size of eight regular buffers, or eight times
BUFFSIZE. Whenever multiple pages to be written to disk are physically
contiguous, OnLine uses a big buffer to write up to eight pages in asingle 170
operation. Refer to page 2-55 for more details about the big buffers.

Writing Data to a Blobspace

Blob data (BYTE and TEXT data types) is written to blobspace pages according
to a procedure that differs greatly from the single-page 170 that is performed
when the shared-memory buffer pool is flushed. (Blob data that is stored in a
dbspace is written to disk pages in the same way as any other data type is
written. Refer also to page 2-148 for more information about the structure of
a blobspace blobpage and to page 2-145 for more information about the
structure of a dbspace blob page.)

OnLine provides blobspace blobpages to store large BYTE and TEXT data
types. OnLine does not create or access blobpages by way of the shared-
memory buffer pool. Blobspace blobpages are not written to either the logical
or physical logs.

The reason that blobspace data is not written to shared memory or to the
OnLine logs is that the data is potentially voluminous. If blobspace data
passed through the shared-memory pool, it would dilute the effectiveness of
the pool by driving out index and data pages. In addition, the many kilobytes
of data per blobspace blob would overwhelm the space allocated for the
logical log files and the physical log.

Instead, blobpage data is written directly to disk when it is created.
Blobpages stored on magnetic media are written to archive and logical log
tapes, but not in the same method as dbspace pages. (Refer to page 4-22 for
further information about blobspace logging.)

IBM Informix OnLine Database Server Administrator's Guide

Writing Data to a Blobspace

At the time that the blob data is being transferred, the row itself may not yet
exist. During an insert, for example, the blob is transferred before the rest of
the row data. After the blob is stored, the data row is created with a 56-byte
descriptor that points to the location of the blob. (Refer to page 2-143 for
further information on blob storage and the blob descriptor that is stored in
the data row.)

During the procedure for writing blob data to a blobspace, OnLine attempts
to perform 170 based on the user-defined blobpage size. If, for example, the
blobpage size is 32 KB, OnLine attempts to read or write blob data in 32,768-
byte increments. If the underlying hardware (such as the disk controller)
cannot transfer this amount of data in a single operation, the UNIX kernel
loops internally (in kernel mode) until the transfer is complete. The following
paragraphs describe this procedure as it occurs when a blob is inserted into
a blobspace.

To receive blob data from the application development tool, the OnLine
server process establishes an open blob for the specific table and row,
meaning that a blob is about to be created.

As part of establishing an open blob, a set of blobspace blob buffers is created.
The set is always composed of two buffers, each the size of one blobspace
blobpage. At any time, only one set of blobspace blob buffers can be used to
transfer blobspace blob data. That is, only one user process can transfer
blobspace blob data to the disk at a time. Only the OnLine server process that
established the open blob can gain access to the buffers.

Blob data is transferred from the application development tool to the OnLine
database server in 1-KB chunks. The server process begins filling the buffers
with the 1-KB pieces and attempts to buffer two blobpages at a time. The
reason for the attempt to fill both buffers is to determine if this is the last page
to be written or if a forwarding pointer to the next page is needed. If both
buffers fill, the server process learns that it must add a forwarding pointer to
the data in the first blobpage buffer when it is stored.

When the OnLine server process begins writing the first blobspace blobpage
buffer to disk, it attempts to perform the 170 based on the blobpage size, as
explained earlier.

System Architecture 2-79

Writing Data to a Blobspace

The blobspace buffers remain until the OnLine server process that opened

the blob is finished. When the application tool process terminates the server
process, the buffers are also terminated. Figure 2-10 illustrates the process of
creating a blobspace blob.

Application process

\/\

Private

portion of
virtual
OnLine
Shared
Memory
Logical
log
buffer

Writing Data to a Blobspace:

1. Blobspace data flows from the pipe, through temporary buffers in the database server process
memory space, and is written directly to disk. Blobspace blobpages are allocated and tracked via
the free-map page. Links connecting the blobpages and pointers to the next blob segments are

created as needed. (Refer to page 2-147.)

2. A record of the operation (insert, update, or delete) is written to the logical log buffer if the
database uses logging. (Refer to page 4-22 for more information about blobspace logging.)

Pipe

Database server process

¥

Temporary blob buffer

I [Temporary blob buffer |

OnLine disk

Blobspace

o

2-80 IBM Informix OnLine Database Server Administrator's Guide

Figure 2-10

Data is written to a
blobspace without
passing through
shared memory.

Disk Data Structures

Disk Data Structures

OnLine achieves its high performance by managing its own I/0. Storage,
search, and retrieval are all managed by OnLine. As OnLine stores data, it
creates the structures it needs to search and retrieve the data later. OnLine
disk structures also store and track control information needed to manage
logging and archiving. OnLine structures must contain all information
needed to ensure data consistency, both physical and logical.

OnLine Disk Space Terms and Definitions

During OnLine operation, either UNIX or OnLine can manage physical disk
170. Two terms describe the space:

= Cooked file space, in which UNIX manages physical disk 170
= Raw disk space, in which OnLine manages physical disk /0

Physical space managed by OnLine is allocated in four different units:

= Achunk

= Anextent
= Apage

= Ablobpage

Overlying these physical units of storage space, OnLine data is organized
into five conceptual units associated with database management:

= A blobspace

= A dbspace
= A database
= Atblspace
= Atable

System Architecture 2-81

OnLine Disk Space Terms and Definitions

2-82

OnLine maintains three additional disk space structures to ensure physical
and logical consistency of data:

= Alogical log
= A physical log
= Reserved pages

Figure 2-11 on page 2-83 illustrates the relationships among these physical
and logical units of disk space. A basic definition of each unit is provided in
the paragraphs that follow.

Chunk

The chunk is the largest unit of physical disk that is dedicated to OnLine data
storage.The chunk can represent an allocation of cooked disk space or raw
disk space.

If a chunk is an allocation of raw disk space, the name of the chunk is the
name of the character-special file in the /dev directory. In many operating
systems, the character-special file can be distinguished from the block-special
file by the letter r, which appears as the first letter in the filename (for
example, /dev/rdsk0a). Space in a chunk of raw disk space is physically
contiguous.

If a chunk is an allocation of cooked disk space, the name of the chunk is the
complete pathname of the cooked file. Since the chunk of cooked disk space
is reserved as an operating-system file, the space in the chunk might or might
not be contiguous.

Page

All space within a chunk is divided into pages. All 170 is done in units of
whole pages. The size of a page is specified as BUFFSIZE in the configuration
file and cannot be changed.

IBM Informix OnLine Database Server Administrator's Guide

OnLine Disk Space Terms and Definitions

Figure 2-11
The logical units of OnLine disk space can be envisioned as overlaying the physical units.

Initial
extent

Page - Blob

Add'tl
extent

|

Add'tl
extent

Blobspace

Several rules of OnLine space allocation are illustrated here. The chunks that compose a dbspace (or blobspace) need not
be contiguous. A single dbspace can include chunks located in cooked and raw file space. A database can contain data stored
in both dbspaces and blobspaces. A thlspace can span chunks, but extents cannot. The thispace is a logical concept that
embraces all data that is allocated to a specific table, including regular data and index pages. Pages that store blobs within
a blobspace can be larger than the pages that store blobs within a dbspace.

System Architecture 2-83

OnLine Disk Space Terms and Definitions

2-84

Blobpage

A blobpage is the unit of disk space allocation used to store BYTE and TEXT
data within a blobspace. The size of a blobpage is selected by the user who
creates the blobspace; the size of a blobpages can vary from blobspace to
blobspace. Blobpage is specified as a multiple of BUFFSIZE, the page size
defined in the configuration file. For more information, refer to page 2-147.

A dbspace contains databases and tables. You can store BYTE and TEXT data
within a dbspace, but if the blobs are larger than two dbspace pages, perfor-
mance can suffer.

The function of the blobspace is to store only BYTE and TEXT data in the most
efficient way possible. Blobs associated with several different tables all can be
stored within the same blobspace. Blob data that is stored in a blobspace is
written directly to disk and does not pass through shared memory. For more
information, refer to page 2-78.

Dbspace and Blobspace

A dbspace or blobspace is composed of one or more chunks. When you create a
dbspace or blobspace, you assign to it one or more primary chunks. You can
add more chunks anytime. One of the key tasks of an OnLine administrator
is to monitor the chunks for fullness and anticipate the need to allocate more
chunks to a dbspace or blobspace.

Dbspaces or blobspaces that are mirrored require one mirror chunk for each
primary chunk. As soon as a mirror chunk is allocated, all space in the chunk
appears as full in the status displays output from tbstat -d or the Dbspaces
menu, Info option.

The initial chunk of the root dbspace and its mirror are the only chunks
created during disk space initialization. The initial chunk of the root dbspace
contains specific reserved pages and internal tables that describe and track all
other dbspaces, blobspaces, chunks, databases, and tblspaces.

IBM Informix OnLine Database Server Administrator's Guide

OnLine Disk Space Terms and Definitions

Database

A database resides in the dbspace named in the SQL statement CREATE
DATABASE. If no dbspace is specified, the database resides in the root
dbspace. When a database is located in a dbspace, it means two things:
= The database system catalog tables are stored in that dbspace.
= That dbspace is the default location of tables that are not explicitly
created in other dbspaces.

Users create a table by executing the SQL statement CREATE TABLE. A table
resides completely in the dbspace specified in the SQL statement. If no
dbspace is specified, the table resides in the same dbspace as its database.

Blob data associated with the table can reside either in the dbspace with the
rest of the table data or in a separate blobspace.

Thblspace

The total of all disk space allocated to a table is that table’s tblspace. The
tbispace includes the following pages:

= Pages allocated to data

s Pages allocated to indexes

= Pages used to store blob data in the dbspace (but not pages used to
store blob data in a separate blobspace)

= Bit-map pages that track page usage within the table extents
The pages that belong to the tblspace are allocated as extents. Extents can be
scattered throughout the dbspace where the table resides. For this reason, all

pages that compose the tblspace are not necessarily contiguous within the
dbspace.

Multiple tblspaces can reside in a single dbspace.

Extent

As more rows of data or indexes are added to a table, OnLine allocates disk
space to atable in units of physically contiguous pages called extents. The first
extent allocated to a table is the initial extent. Each subsequent extent is
referred to as a next extent.

System Architecture 2-85

OnLine Disk Space Terms and Definitions

2-86

Extents for a single table can be located within different chunks of the same
dbspace. However, extents must be located wholly in one chunk or another;
extents cannot span chunk boundaries. All data within an extent pertains to
a single tblspace.

The initial extent of a table and all subsequent “next” extents may differ in
size. The size of the table extents are specified as part of the SQL statement
CREATE TABLE.

Physical Log

The physical log is a unit of physically contiguous disk pages that contain
“before-images” of pages that have been modified during processing. When
the physical log “before-images” are combined with the most-recent records
stored in the logical logs, OnLine can return all data to physical and logical
consistency, up to the point of the most-recently completed transaction. This
is the concept of fast recovery. Refer to page 4-39 for more information about
fast recovery.

Logical Log

The logical log disk space is composed of three or more allocations of physi-
cally contiguous disk pages. Each allocation of space is called a logical log file.
The logical log contains a record of logical operations performed during
OnLine processing. If a database is created with transactions, all transaction
information is stored in the logical log files. Refer to page 3-13 for more infor-
mation about the administrative aspects of the logical log. Refer to page 4-18
for more information about the role of the logical log in logging operations.
(Refer to page 2-153 for more information about the structure and contents of
the logical log files.)

When the logical log record of operations is combined with the archive tapes
of OnLine data, the OnLine data can be restored up to the point of the most-
recently stored logical log record. This is the concept of a data restore. (Refer

to page 4-45 for more information about the data restore procedure.)

IBM Informix OnLine Database Server Administrator's Guide

Structure of the Root Dbspace

Structure of the Root Dbspace

The OnLine configuration file contains the location of the initial chunk of the
root dbspace. If the root dbspace is mirrored, the mirror chunk location is also
specified in the configuration file.

As part of disk space initialization, the tbinit daemon initializes the
following structures in the initial chunk of the root dbspace:

= Twelve reserved pages (page 2-95)

= The first chunk free-list page (page 2-103)

= The tblspace tblspace (page 2-104)

= The database tblspace (page 2-107)

= The physical log (page 2-151)

= The logical log files (page 2-153)

» Unused pages
Figure 2-12 illustrates the structures residing in the root dbspace following
disk space initialization. Each of these structures is described in the
paragraphs that follow. To see that your root dbspace follows this organi-
zation, execute the command tbcheck -pe, which produces a dbspace usage

report, by chunk. (The database tblspace does not appear in the tbcheck -pe
output.)

System Architecture 2-87

Structure of the Root Dbspace

2-88

Root dbspace Chunk free-list page
(initial chunk) /

Reserved pages #

Physical log

Thlspace thispace

Logical log files

Unused pages

Database thlspace

IBM Informix OnLine Database Server Administrator's Guide

Figure 2-12
Structures within
the initial chunk of
the root dbspace
following disk
space

initialization

Structure of a Regular Dbspace

Structure of a Regular Dbspace

After disk space initialization, you can add new dbspaces. When you create
a dbspace, you assign at least one chunk (either raw or cooked disk space) to
the dbspace. This is the initial, primary chunk. Figure 2-13 illustrates the
structure of the initial chunk of a regular (nonroot) dbspace.

When the dbspace is first created, it contains the following structures:

Two reserved pages (duplicates of the first two reserved pages in the
root dbspace, page 2-95)

The first chunk free-list page in the chunk (page 2-103)
The tblspace tblspace for this dbspace (page 2-104)
Unused pages

Dbspace
(initial chunk)

Figure 2-13
Chunk free-list page Structures within

|
Reserved
pages
|

the initial chunk of a
| | |

regular dbspace,
after the dbspace is
Thlspace thlspace

created

Unused pages

System Architecture 2-89

Structure of an Additional Dbspace Chunk

Structure of an Additional Dbspace Chunk

You can create a dbspace that comprises more than one chunk. The initial
chunk in a dbspace contains the tblspace tblspace for the dbspace. Additional
chunks do not. When an additional chunk is first created, it contains the
following structures:

= Two reserved pages (duplicates of the first two reserved pages in the
root dbspace, page 2-95)

= The first chunk free-list page (page 2-103)

» Unused pages

Figure 2-14 illustrates the structure of all additional chunks. (The structure
also applies to additional chunks in the root dbspace.)

Figure 2-14
Dbspace Chunk free-list page Structures within

(additional chunk) additional chunks

of a dbspace, after
the chunk is
created.

I
Reserved
pages

Unused pages

2-90 IBM Informix OnLine Database Server Administrator's Guide

Structure of a Blobspace

Structure of a Blobspace
After disk initialization, you can create blobspaces.

When you create a blobspace, you can specify the effective size of the blob-
holding pages, called blobpages. The blobpage size for the blobspace is
specified when the blobspace is created as a multiple of BUFFSIZE (the page
size). All blobpages within a blobspace are the same size, but the size of the
blobpage can vary between blobspaces. Blobpage size can be greater than the
page size because blob data stored in a blobspace is never written to the page-
sized buffers in shared memory.

The advantage of customizing the blobpage size is storage efficiency. Within
ablobspace, blobs are stored in one or more blobpages but blobs do not share
blobpages. Blob storage is most efficient when the blob is equal to, or slightly
smaller than, the blobpage size.

The blobspace free-map pages and bit-map pages are the size specified as
BUFFSIZE, which enables them to be read into shared memory and to be
logged. When the blobspace is first created, it contains the following
structures:

= Blobspace free-map pages (page 2-147)

= The bit map that tracks the free-map pages (page 2-147)

= Unused blobpages

System Architecture 2-91

Structure of a Blobspace or Dbspace Mirror Chunk

Figure 2-15 illustrates the blobspace chunk structure as it appears immedi-
ately after the blobspace is created.

Figure 2-15
Blobspace Free-map pages Structures within a
(any chunk) Bit map that tracks the free-map pages blobspace, after the
blobspace is

created. Blobpage
size must be a
multiple of page
size.

Unused space initialized as blobpages

Structure of a Blobspace or Dbspace Mirror Chunk

Each mirror chunk must be the same size as its primary chunk. When a
mirror chunk is created, tbinit schedules a daemon process to immediately
write the contents of the primary chunk to the mirror chunk.

The mirror chunk contains the same control structures as the primary chunk.

A disk space allocation report (tbstat -d) always indicates that a mirror chunk
is full and has no unused pages. Even though the chunk free-list page in the
mirror chunk duplicates the chunk free-list page in the primary chunk, all
OnLine output that describes disk space indicates that the mirror chunk is
100 percent full. The “full” mirror chunk indicates that none of the space in
the chunk is available for use other than as a mirror of the primary chunk.
The status remains full for as long as both primary chunk and mirror chunk
are online.

2-92 IBM Informix OnLine Database Server Administrator's Guide

OnLine Limits for Chunks

If the primary chunk goes down and the mirror chunk becomes the primary
chunk, disk space allocation reports will accurately describe the fullness of
the new primary chunk.

Figure 2-16 illustrates the mirror chunk structure as it appears after the chunk

is created.
Figure 2-16
Generic mirror Number and type of control pages varies, Structures within a
chunk depending on chunk type. mirror chunk after
the chunk is
4/ | | created

Control pages

Remaining space in a mirror
chunk is marked as full.

OnLine Limits for Chunks

The maximum number of chunks that can exist within an OnLine configu-
ration might be operating-system dependent. The maximum value is the
lesser of the following two values:

= The number of chunk entries (pathnames) that can fit on a page. (Use
tbcheck -pr to display chunk pathnames. Refer to page 2-100.)

= The maximum number of files a user process can hold open, minus
6. (The maximum number is defined by the operating system.)

OnLine allocates one page for maintaining its list of chunks. OnLine installed
on a machine with a 4-KB page size can accommodate twice as many equal-
sized chunk entries as can an OnL.ine database server installed on a machine
with a 2-KB page.

System Architecture 2-93

OnLine Limits for Chunks

2-94

The size of each chunk entry on the chunk-tracking page is the length of the
chunk pathname plus 29 bytes. The available space on the tracking page is
BUFFSIZE minus 28 bytes. As you calculate the number of possible chunk
entries, remember that each chunk entry might require up to three additional
bytes to accommodate 4-byte alignment. In the example calculation that
follows, it is assumed that all chunk pathnames are the same size, 10 bytes,
and the page size is two kilobytes:

Each chunk pathnane is 10 bytes.

Addi tional chunk information requires 29 bytes.

Each chunk entry requires a total of 39 bytes.

For 4-byte alignment, each chunk entry requires a total of 40
byt es.

BUFFSI ZE is equal to 2 kilobytes or 2048 bytes.
Space avail abl e on the chunk-tracki ng page
is equal to 2048 - 28 or 2020 bytes.

The maxi mum nunber of chunk entries that can fit on the chunk-
tracki ng page is equal to 2020/40 or 50.

To avoid difficulties that might occur if you run out of space for chunk entries
or if you start to exceed the maximum number of available files, follow these
suggestions:

= Select short chunk pathnames.

= Create large chunks.
Add chunks only as needed. You can easily add chunks during OnLine
operation. However, if you over-allocate chunks to a blobspace or dbspace

when you first create it, the space remains tied up but unused. You cannot
drop or move individual chunks from a blobspace or dbspace.

IBM Informix OnLine Database Server Administrator's Guide

Reserved Pages

Reserved Pages

The first 12 pages of the initial chunk of the root dbspace are reserved pages.
Copies of the first two reserved pages are also found on every other OnLine
chunk.

Each reserved page contains specific control and tracking information used
by tbinit. Below are listed the function of each of the 12 reserved pages. Each
reserved page is described, by field, in the pages that follow in this section.

Order Page Name Page Usage

1 PAGE_PZERO System identification

2 PAGE_CONFIG Copy of configuration file

3 PAGE_1CKPT Checkpoint 7 logical log tracking
4 PAGE_2CKPT Alternate CKPT page

5 PAGE_1DBSP Dbspace descriptions

6 PAGE_2DBSP Alternate DBSP page

7 PAGE_1PCHUNK Primary chunk descriptions
8 PAGE_2PCHUNK Alternate PCHUNK page

9 PAGE_1IMCHUNK Mirror chunk descriptions
10 PAGE_2MCHUNK Alternate MCHUNK page
11 PAGE_1ARCH Archive tracking

12 PAGE_2ARCH Alternate ARCH page

Beginning with the third reserved page, PAGE_1CKPT, the pages are
organized into pairs. These pairs become important when tbinit begins to
update the reserved pages as part of the checkpoint procedure.

During every checkpoint, tbinit writes the system identification information
in shared memory to PAGE_PZERO, whether or not that information has
changed since the last checkpoint. Similarly, tbinit always overwrites
PAGE_CONFIG with the configuration file (specified as TBCONFIG).

System Architecture 2-95

Reserved Pages

The reserved page checkpoint information is stored in a two-page pair,
PAGE_1CKPT and PAGE_2CKPT. This information changes for each check-
point. During each checkpoint, tbinit writes the latest checkpoint
information to one of the pages in the pair. During the next checkpoint, thinit
writes the information to the other page in the pair. At any point, one page in
the checkpoint reserved page pair contains a copy of information written at
the most-recent checkpoint and the other page in the pair contains a copy of
information written at the second most-recent checkpoint.

The tbinit daemon follows a different procedure for updating information in
the next three reserved page pairs. The tbinit daemon only updates the
dbspace, primary chunk, or mirror chunk reserved pages when a change
occurs. The tbinit daemon learns of a change from flags that are set on the
dbspace, primary chunk, and mirror descriptor tables in shared memory.
During the checkpoint, thinit checks each shared-memory descriptor table
for a change flag.

If the flag is set, thinit prepares to write the modified descriptor information
to the appropriate page in the reserved page pair. First, tbinit switches from
the current page (which is the page that received the last write) to the other
page in the pair. Second, tbinit writes the information to the reserved page.
Third, tbinit updates the fields that contain the numbers of the current pages
for the dbspace, primary chunk, or mirror chunk information. (These fields
are located on the PAGE_1CKPT and PAGE_2CKPT pages.)

The last pair of reserved pages contains archive information. During a check-
point, tbinit always updates one of the pages in the PAGE_1ARCH/
PAGE_2ARCH reserved-page pair. The tbinit daemon alternates between each
page in the pair with every checkpoint.

Refer to page 2-72 for a description of the complete checkpoint procedure.

2-96 IBM Informix OnLine Database Server Administrator's Guide

Reserved Pages

PAGE_PZERO

The first reserved page in the root dbspace is PAGE_PZERO. Below are listed
the PAGE_PZERO fields and definitions. To obtain a listing of the reserved
page, execute the command tbhcheck -pr.

Field Name Description

Identity IBM Informix OnLine copyright

Database system state Unused

Database system flags Unused

Page size Page size for this machine, in bytes

Date/time created Date and time of disk space initialization

\ersion number Unused

Last modified timestamp Unused (although a 1 appears)
PAGE_CONFIG

The second reserved page in the root dbspace is PAGE_CONFIG. This page
contains either a copy of the configuration file specified by $INFOR-
MIXDIR/etc/$TBCONFIG or, if TBCONFIG is not set, the file
$INFORMIXDIR/etc/tbconfig, by default. (Refer to page 1-13 for a listing of all
configuration file parameters.)

PAGE_CKPT

The third reserved page in the root dbspace is PAGE_1CKPT. The fourth
reserved page, PAGE_2CKPT, is the second page in the pair.

The tbinit daemon uses the checkpoint and logical log file information for
checkpoint processing. The date and time of the last checkpoint, available
from the Force-Ckpt menu, is obtained from this reserved page. (Refer to
page 2-72 for a complete explanation of the checkpoint procedure.)

System Architecture 2-97

Reserved Pages

2-98

tbcheck -pr.

Below are listed the checkpoint and logical log file tracking fields and defini-
tions. To obtain a listing of the reserved page, execute the command

Field Name

Description

Timestamp of checkpoint

Checkpoint time
Physical log begin address
Physical log size

Physical log position, Ckpt

Logical log unique 1D

Logical log position, Ckpt

Dbspace descriptor page

Primary chunk descriptor page

Mirror chunk descriptor page

Log file number
Logical log file flags:

0x01
0x02
0x04
0x08
0x10

Timestamp

Timestamp of the last checkpoint,
displayed as decimal value

Time the last checkpoint occurred
Beginning address of the physical log
Number of pages in the physical log

Physical location for the start of the next set
of “before-images”

ID number of the logical log file storing the
most-recent checkpoint record

Physical location of this checkpoint record
in the logical log file

Address of the current dbspace reserved
page

Address of the current primary chunk
reserved page

Address of the current mirror chunk
reserved page

The following fields display for each OnLine logical log file.

Number of this logical log file

Log file in use

Log file is the current log

Log file has been backed up

Log file is newly added

Log file has been written to archive tape

Timestamp when log filled (decimal)

IBM Informix OnLine Database Server Administrator's Guide

(1of2)

Reserved Pages

Field Name

Description

Date/time file filled
Unique ID

Physical location
Log size

Number pages used

Date and time that this log filled

ID number of this logical log file
Address of this logical log file on disk
Number of pages in this logical log file

Number of pages used in this logical log file

PAGE_DBSP

(2 of 2)

The fifth reserved page in the root dbspace is PAGE_1DBSP. The sixth reserved
page, PAGE_2DBSP, is the second page in the pair.

The tbinit daemon uses the dbspace page to describe each dbspace and its

current status.

Below are listed the dbspace description fields and definitions. To obtain a
listing of the reserved page, execute the command tbcheck -pr.

Field Name

Description

Dbspace number
Dbspace flags:

0x01
0x02
0x04
0x08
0x10
0x80

First chunk

Number of chunks

Dbspace number

Dbspace is not mirrored
Dbspace includes mirror chunks
Dbspace contains a down chunk
Dbspace is newly mirrored
Dbspace is a blobspace
Blobspace has been dropped

Number of the dbspace initial chunk

Number of chunks in the dbspace

(Lof2)

System Architecture 2-99

Reserved Pages

2-100

Field Name

Description

Date/time created
Dbspace name

Dbspace owner

Date and time the dbspace was created
Dbspace name

Dbspace owner

PAGE_PCHUNK

(2 of2)

The seventh reserved page in the root dbspace is PAGE_1PCHUNK. The eighth
reserved page, PAGE_2PCHUNIK, is the second page in the pair.

The tbinit daemon uses the primary chunk page to describe each chunk; its
pathname, its relation to the dbspace, and its current status.

Below are listed the primary chunk fields and definitions. To obtain a listing
of the reserved page, execute the command tbcheck -pr.

Field Name

Description

Primary chunk number
Next chunk in dbspace
Chunk offset

Chunk size

Number of free pages
Dbspace number

Overhead

Chunk number

Number of the next chunk in the dbspace
Offset of chunk, in pages

Number of pages in the chunk

Number of free pages in the chunk
Number of this chunk’s dbspace

Free-map page address (blobspace only)

(1 of2)

IBM Informix OnLine Database Server Administrator's Guide

Reserved Pages

Field Name Description
Chunk flags:
0x01 Raw device
0x02 Block device
0x04 UNIX file
0x08 Needs sync() to operating system
0x20 Chunk is offline
0x40 Chunk is online
0x80 Chunk is in recovery
0x100 Chunk is newly mirrored
0x200 Chunk is part of a blobspace
0x400 Chunk is being dropped

Chunk name length

Chunk path

Length of the chunk pathname

Operating system path for chunk

PAGE_MCHUNK

2 0of2)

The ninth reserved page in the root dbspace is PAGE_1MCHUNK. The tenth
reserved page, PAGE_2MCHUNIK, is the second page in the pair.

The tbinit daemon uses the mirror chunk page to describe each mirror
chunk, its pathname, its relation to the dbspace, and its current status.

Below listed the mirror chunk fields and definitions. To obtain a listing of the
reserved page, execute the command tbcheck -pr.

Field Name

Description

Primary chunk number
Next chunk in dbspace
Chunk offset

Chunk size

Number of free pages

Dbspace number

Chunk number

Number of the next chunk in the dbspace
Offset of chunk, in pages

Number of pages in the chunk

Number of free pages in the chunk

Number of this chunk’s dbspace

(Lof2)

System Architecture 2-101

Reserved Pages

2-102

Field Name Description
Overhead Free-map page address (blobspace only)
Chunk flags:
0x01 Raw device
0x02 Block device
0x04 UNIX file
0x08 Needs sync() to operating system
0x10 Chunk is a mirror chunk
0x20 Chunk is offline
0x40 Chunk is online
0x80 Chunk is in recovery
0x100 Chunk is newly mirrored
0x200 Chunk is part of a blobspace
0x400 Chunk is being dropped

Chunk name length

Chunk path

Length of the chunk pathname

Operating-system path for chunk

PAGE_ARCH

2 of 2)

The eleventh reserved page in the root dbspace is PAGE_1ARCH. The twelfth

reserved page, PAGE_2ARCH, is the second page in the pair.

The tbinit daemon uses the archive reserved pages to describe the most-

recent and the second most-recent archives.

Below are listed the archive description fields and definitions. To obtain a
listing of the reserved page, execute the command tbcheck -pr.

Field Name

Description

Archive level

Real time archive began

Level of this archive (0, 1, or 2)

Date and time of this archive

(L of2)

IBM Informix OnLine Database Server Administrator's Guide

Chunk Free-List Page

Field Name Description
Timestamp archive Timestamp for this archive (decimal)
Logical log unique ID ID number of the logical log file containing the
record of this archive
Logical log position Physical location of this checkpoint record in the
logical log file
(20f2)

Chunk Free-List Page

In every chunk, the page that follows the last Preserved page is the first of one
or more chunk free-list pages that tracks available space in the chunk. A
chunk free-list page contains the starting page (page offset into the chunk) of
each section of free space and the length of the free space measured in
number of pages.

Figure 2-17
Chunk Chunk free-list page The chunk free-list
page

follows the
reserved pages in
every chunk.

Initially, the chunk free-list page has a single entry. For example, in any
dbspace initial chunk other than root, the starting page number of free space
is three. The reserved pages fill the first two pages and the chunk free list fills
the third. The length of the free space in the first entry is the size of the chunk,
minus three pages.

When chunk pages are allocated, the loss of free space is recorded by
changing the starting page offset and the length of the unused space.

When chunk pages are freed (for example, if a table is dropped), entries are
added that describe the starting page and length of each section of newly
freed, contiguous space.

System Architecture 2-103

tblspace Thlspace

If newly freed space is contiguous with existing free space, only the length of
the existing entry is changed; otherwise, a new entry is created.

Illustrated here is a sample listing from a chunk free-list page.

Chunk Offset Number of Free Pages
14 28
123 36
208 52

If an additional chunk free-list page is needed to accommodate new entries,
anew chunk free-list page is created in one of the free pages in the chunk. The
chunk free-list pages are chained in a linked list. Each free-list page contains
entries that describe all free space starting with the next page and continuing
to the next chunk free-list page or to the end of the chunk.

tblspace Thispace

In the initial chunk of every dbspace, the page that follows the chunk free-list
page is the first page of the tblspace tblspace. The thispace tblspace is a
collection of pages that describe the location and structure of all thispaces in
this dbspace. Figure 2-18 illustrates the location of the tbispace tblspace.

Figure 2-18

Chunk Chunk free-list page The thlspace
| i i i i tblspace appears in

every dbspace,

Reserved pages Thispace thlspace following the

reserved pages and
the chunk free-list

2-104 IBM Informix OnLine Database Server Administrator's Guide

tblspace Thlspace

tblspace Thlspace Entries

Each data page in the tbispace tblspace describes one tblspace in the dbspace
and is considered one entry. Entries in the tblspace tblspace are added when
anew table is created. The first page in every tblspace tblspace is a bit map of
the pages in the tblspace tblspace. The second page is the first tblspace entry;,
and it describes itself. The third page describes the first user-created table in
this dbspace. Each tblspace tblspace entry (page) includes the following
components:

Page header 24 bytes, standard page header information
Page-ending timestamp 4 bytes

Tblspace header 56 bytes, general tblspace information available
from a tbcheck -pt display

Column information Each special column in the table is tracked with
an 8-byte entry. (A special column is defined as a
VARCHAR, BYTE, or TEXT data type.)

Index information Each index on the table is tracked with a 16-byte
entry.

Index column information Each column component in each index key is
tracked with a 4-byte entry.

Extent information Each extent allocated to this tblspace is tracked
with an 8-byte entry.

Tblspace Number

Each tbispace that is described in the tbilspace receives a tblspace number.
This tblspace number is the same value that is stored as the partnum field in
the systables system catalog table. It also appears in a tbstat -t listing.

The tblspace number (partnum) is stored as an integer (4 bytes). The
following SQL query retrieves the partnum for every table in the database
and displays it along with the table name and the hexadecimal representation
of partnum:

SELECT tabnane, partnum HEX(partnun) hex_tbl space_name FROM syst abl es

System Architecture 2-105

tblspace Thlspace

The hexadecimal representation of partnum is actually a composite of two
numbers. The most-significant 8 bits indicate the dbspace number where the
tbispace resides. The least-significant 24 bits indicate the logical page number
where the tblspace is described. Figure 2-19 on page 2-106 illustrates the
elements of a tblspace number.

Logical page numbers are relative to the tblspace. That is, the first page in a
tblspace is logical page 0. (Physical page numbers refer to the address of the
page in the chunk.) For example, the tblspace number of the tblspace tblspace
in the root dbspace is always 0x1000001. This means that the root space
tbispace tblspace is always contained in the first dbspace and on logical page
1 within the tblspace tblspace. (The bit-map page is page 0.)

Figure 2-19

The tblspace

number is

composed of the

dbspace number

and a page number

in the tblspace

0 - 23 page number within the thispace thlspace tbispace.
24 - 31 dbspace number

Tblspace number

31 23 0

tblspace Tblspace Size

The tblspace tblspace pages are allocated as an extent when the dbspace is
initialized.

Usually, the initial size of the tblspace tblspace is 2 percent of the initial
chunk, plus five pages. However, this is not the case if the initial chunk is so
large that the resulting tblspace tblspace would be bigger than a single bit-
map page could manage. In this circumstance, the tblspace tblspace is sized

according to the maximum number of pages that the single bit-map page can
manage.

If a database server process attempts to create a table and the tblspace
tbispace is full, the server process allocates a next extent to the tblspace.
Additional bit-map pages are allocated as needed.

When a table is removed from the dbspace, its corresponding entry in the
tbispace tblspace is deleted. The space in the tblspace is released and can be
used by a new tblspace.

2-106 IBM Informix OnLine Database Server Administrator's Guide

Database Thlspace

tblspace Tblspace Bit-Map Page

The first page of the tblspace tblspace, like the first page of any initial extent,
is a bit map that describes the page fullness of the following pages. Each page
that follows has an entry on the bit-map page. If needed, additional bit-map
pages are located throughout the contiguous space allocated for the tbispace,
arranged so that each bit map describes only the pages that follow it, until the
next bit map or the end of the dbspace. The bit-map pages are chained in a
linked list.

Database Thlspace

The database tblspace appears only in the initial chunk of the root dbspace.
The database tblspace contains one entry for each database managed by
OnLine. Figure 2-20 illustrates the location of the database tbispace.

- Figure 2-20
Root dbspace initial chunk Chunk-free-list page The database
tblspace appears

| | | only in the root
Reserved pages dbspace,
following the
tblspace tblspace.
* Thispace thlspace
Thlspace thispace Database thlspace
(continued)

The tblspace number of the database tblspace is always 0x1000002. This
tblspace number appears in atbstat -t listing if the database tblspace is active.
Refer to page 2-104 for more details about the tblspace number.

System Architecture 2-107

Create a Database: What Happens on Disk

2-108

Each database tbispace entry includes four components:

= Database name
= Database owner
= Date and time the database was created

= The tblspace number of the systables system catalog table for this
database

The database tblspace includes a unique index on the database name to
ensure that every database is uniquely named. For any database, the
systables table describes each permanent table in the database. Therefore, the
database tblspace only points to the detailed database information located
elsewhere. When the root dbspace is initialized, the database tblspace first
extent is allocated. The initial extent size and the next extent size for the
database tblspace are four pages. You cannot modify these values.

Create a Database: What Happens on Disk

After the root dbspace exists, users can create a database. The SQL statement
CREATE DATABASE allows users to specify the dbspace where the database is
to reside. This dbspace is the location for the database system catalog tables
and all data and corresponding index information. (Blob data can be stored
in a separate blobspace.)

By default, the database is created in the root dbspace. Users can place the
database in another dbspace by specifying the dbspace name in the CREATE
DATABASE statement.

The paragraphs that follow describe the major events that occur on disk
when OnLine adds a new database.

IBM Informix OnLine Database Server Administrator's Guide

Create a Database: What Happens on Disk

Allocate Disc Space

OnLine searches the linked list of chunk free-list maps in the dbspace,
looking for free space in which to create the system catalog tables. For each
table in turn, OnLine allocates eight contiguous pages, the size of the initial
extent of each system catalog table. The tables are created individually and
do not necessarily reside next to each other in the dbspace. They might be
located in different chunks. As adequate space is found for the initial extent
of each table, the pages are allocated and the associated chunk free-list page
is updated.

Track Systems Catalogs

An entry describing the database is added to the database tblspace in the root
dbspace. For each system catalog table, OnLine adds a one-page entry to the
tbispace tblspace in the dbspace. Figure 2-21 illustrates the relationship
between the database tblspace entry and the location of the systables table
for the database.

e database th] Figure 2-21
Anentry in the database thispace points to OnLine tracks
Database tbispace the database systables table. databases in the
[1 database tblspace,
which resides in the
root dbspace.
Dbspace
systables Thispaces

System Architecture 2-109

OnLine Limits for Databases

2-110

OnLine Limits for Databases

The size limits that apply to databases are related to their location in a
dbspace.

You can specify the dbspace where a database resides, but you cannot control
the placement of database tables within the dbspace chunks. If you want to
be certain that all tables in a database are created on a specific physical
device, assign only one chunk to the device and create a dbspace that
contains only that chunk. Place your database in that dbspace. (This also
limits the size of the database to the size of the chunk.)

Tables cannot grow beyond the space available in the dbspace. You can limit
the growth of a table by refusing to add a chunk to the dbspace when it
becomes full.

DB-Monitor displays the first 100 databases you create through the Status
menu, Databases option. Although you can continue to create databases, you
are unable to view them through DB-Monitor. It is possible that, without
documentation, you could lose track of the names of these unseen databases.
For this reason, Informix recommends that you keep records of the databases
you create. Although the tbcheck -pe listing includes all databases, it could
be time-consuming to assemble a database list from the tbcheck -pe output.

Create a Table: What Happens on Disk

After the root dbspace exists and a database has been created, users with the
necessary SQL privileges can create a database table.

The table attributes are specified in the SQL statement CREATE TABLE. Users
can place the table in a specific dbspace by naming the dbspace in the
statement. Otherwise, by default, the table is created in the dbspace where
the database resides.

When users create a table, OnLine allocates disk space for the table in units
called extents.

An extent is a block of physically contiguous pages from the dbspace. The
CREATE TABLE statement can specify a size (in kilobytes) for the initial extent
and for every next extent that follows. Otherwise, the default value for each
extent is eight pages. (Refer to page 2-114 for more information about extents
and to page page 2-117 for more information about next extent allocation.)

IBM Informix OnLine Database Server Administrator's Guide

Create a Table: What Happens on Disk

The paragraphs that follow describe the major events that occur when
OnLine creates a table and allocates the initial extent of disk space.

Allocate Disc Space

OnLine searches the linked list of chunk free-list maps in the dbspace for
contiguous free space equal to the initial extent size for the table. When
adequate space is found, the pages are allocated and the associated chunk
free-list page is updated. If space for the extent cannot be found, an error is
returned. (Since an extent is, by definition, contiguous disk space, extents
cannot span two chunks.)

Add Entry to tblspace Tblspace

OnLine adds a one-page entry for this table to the tblspace tbispace in this
dbspace. The tblspace number assigned to this table is derived from logical
page number in the tblspace tblspace where the table is described. (Refer to
page 2-104 for further information about the tblspace tblspace.)

The tblspace number indicates the dbspace where the tbispace is located.
Thblspace extents can be located in any of the dbspace chunks. Execute
tbcheck -pe for a listing of the dbspace layout by chunk if you must know
exactly where the tblspace extents are located.

Add Entry to System Catalog Tables

The table itself is fully described in entries stored in the system catalog tables
for the database. Each table is assigned a table identification number or tabid.
The tabid value of the first user-defined table in a database is always 100. For
a complete discussion of the system catalog, refer to IBM Informix Guide to
SQL: Tutorial.

System Architecture 2-111

Create a Table: What Happens on Disk

2-112 IBM Informix OnLine Database Server Administrator's Guide

Figure 2-22

A table can be
located in a
dbspace that is
different than the
dbspace that
contains the
database. The
tblspace itself is the
sum of allocated
extents, not a
single, contiguous
allocation of space.
OnLine tracks
tblspaces
independently of
the database.

Figure 2-22 illustrates the pointers within the disk data structures that track
and monitor the disk space allocated to a table.
Dbspace
Thlspace thlspace
Thlspace
Initial extent
LI\ T NT T T IT]
Thlspace
Initial extent
LI T T T T IT]
Dbspace \ \
* Thlspace
Initial extent
LI T T T T T T TTT]
Next extent
Thlspace
Initial extent

Create a Temporary Table: What Happens on Disk

Create a Temporary Table: What Happens on Disk

After the root dbspace exists, users with the necessary SQL privileges can
create an explicit temporary table by executing the SQL statement CREATE
TABLE with the TEMP keyword. During processing, OnLine user processes
may create implicit temporary tables as part of SQL statement processing. If a
user creates a temporary table by executing a SELECT ... INTO TEMP
statement, OnLine handles the table as if it were an explicit temporary table.

Placement
By default, temporary tables are created in the root dbspace.

Users can create explicit temporary tables in some other dbspace by speci-
fying the dbspace name in the CREATE TABLE statement. Users can also
specify sizes of the initial extent and the next extents for an explicit
temporary table in the statement. If initial and next extent sizes are not
specified, the default sizes are eight pages.

Temporary tables created as part of internal processing or by using the
SELECT ... INTO TEMP statement always reside in the root dbspace. For an
implicit temporary table, the initial and next extent sizes are always eight
pages.

Tracking

The tasks involved in creating temporary tables are similar to the tasks
OnLine performs when it adds a new permanent table. The key difference is
that temporary tables do not receive an entry in the system catalog for the
database. (Refer to page 2-110 for a description of what happens when a table
is created.)

System Architecture 2-113

Structure of an Extent

2-114

Cleanup

Explicit temporary tables are dropped when the OnLine user process exits.
Implicit temporary tables may be dropped at any time during processing.

If the OnLine database server shuts down without adequate time to clean up
temporary tables, the tbinit daemon performs the cleanup as part of the next
OnLine initialization. (To request shared-memory initialization without
temporary table cleanup, execute tbinit with the -p option. Refer to page 2-8
for further information about initialization commands.)

Structure of an Extent

An extent is a collection of pages within a dbspace. Every permanent
database table has two extent sizes associated with it. The initial extent size
is the number of kilobytes allocated to the table when it is first created. The
next extent size is the number of kilobytes allocated to the table when the
initial extent, and every extent thereafter, becomes full.

Blobspaces do not employ the concept of an extent.

Refer to page 2-117 for a description of next extent allocation. Refer to
IBM Informix Guide to SQL: Tutorial for specific instructions how to specify and
calculate the size of an extent.

Extent Size

The minimum size of an extent is four pages. No maximum limit exists,
although a practical limit is about two gigabytes (or as much space as is
available within the chunk). Extent sizes must be an even multiple of the
page size, specified as BUFFSIZE in the configuration file. The default size of
an extent is eight pages.

The maximum size of an extent is determined by the largest page number
that can be accommodated in a rowid. (Refer to page 2-123 for further infor-
mation about rowids.) Since the page number in a rowid cannot exceed
16,777,215, this is the upper limit of the number of pages that a single extent
can contain.

IBM Informix OnLine Database Server Administrator's Guide

Structure of an Extent

Page Types

Within the extent, individual pages contain different types of data. Extent
pages can be separated into five categories:

= Data pages
= Index pages (root, branch, and leaf pages)

= Bit-map pages (a 4-bit bit map if the table contains a VARCHAR, BYTE,
or TEXT data type or if the length of one row is greater than BUFFSIZE;
otherwise, a 2-bit bit map)

= Blob pages
= Free pages

Refer to page 2-120 for further information about the structure of a dbspace
data page. Refer to page 2-133 for further information about the structure of
a dbspace index page. Refer to page 2-142 for further information about the
structure of a dbspace bit-map page. Refer to page 2-145 for further infor-
mation about the structure of a dbspace blob page.

An extent might or might not include all five page types. Each page type
serves a different function within the extent.

Data pages contain the data rows for the table.
Index pages contain the index information for the table.

Bit-map pages contain control information that monitors the fullness of every
page in the extent.

Blob pages contain blobs that are stored with the data rows in the dbspace.
(Blobs that reside in a blobspace are stored in blobpages, a structure that is
completely different than the structure of a dbspace blob page. Refer to
page 2-148 for further information about storing a blob in a blobspace
blobpage.)

Free pages are pages in the extent that are allocated for tblspace use but whose
function has not yet been defined. Free pages can be used to store any kind
of information: data, index, blob, or bit-map.

Figure 2-23 illustrates the possible structure of a table with an initial extent
size of 8 pages and a next extent size of 16 pages.

System Architecture 2-115

Structure of an Extent

Initial extent

Bit-map page

Index page

Data page

Blob page

Index page

Data page

Data page

Data page

Next extent

Data page
Data page
Data page
Blob page
Data page
Index page

Free page

2-116 IBM Informix OnLine Database Server Administrator's Guide

Figure 2-23

The initial extent
size for this table is
8 pages; the next
extent size is 16
pages. Dbspace
pages remain free
until they are
needed for data
storage.

Next Extent Allocation

Next Extent Allocation

When an extent fills, OnLine attempts to allocate another extent of
contiguous disk space.

Extent information is tracked as one component of the tblspace tblspace
information for a table. The maximum number of extents allocated for any
tbispace is application- and machine-dependent since it varies with the
amount of space available on the tblspace tblspace entry. (Refer to

page 2-104.)

The number of kilobytes OnLine allocates for a next extent is, in general,
equal to the size of a next extent, as specified in the SQL statement CREATE
TABLE. However, the actual size of the next extent allocation may deviate
from the specified size because the allocation procedure takes into account
three factors:

= Number of existing extents for this tblspace
= Availability of contiguous space in the chunk and dbspace
= Location of existing tblspace extents

The effect of each of these factors on next extent allocation is explained in the
paragraphs that follow and in Figure 2-24 on page 2-119.

If a tblspace already has 64 extents allocated, OnLine automatically doubles
the size of the next extent and attempts to allocate this doubled size for the
65th extent, and every next extent thereafter, up to the 128th next extent.
Automatic doubling of the next extent size occurs at every multiple of 64
(for example, 128, 192, 256). This feature reduces the number of extents
needed to store data for large tables.

If OnLine cannot find available contiguous space in the first chunk equal to
the size specified for the next extent, it extends the search into the next chunk
in the dbspace. Extents are not allowed to span chunks.

If OnLine cannot find adequate contiguous space anywhere in the dbspace,
it allocates to the table the largest available amount of contiguous space. (The
minimum allocation is four pages. The default value is eight pages.) No error
message is returned if an allocation is possible, even when the amount of
space allocated is less than the requested amount.

System Architecture 2-117

Next Extent Allocation

2-118

If the disk space allocated for a next extent is physically contiguous with disk
space already allocated to the same table, OnLine allocates the disk space but
does not consider the new allocation as a separate extent. Instead, OnLine
extends the size of the existing contiguous extent. Thereafter, all OnLine disk
space reports reflect the allocation as an extension of the existing extent. That
is, the number of extents reported by OnLine is always the number of physi-
cally distinct extents, not the number of times a next extent has been allocated
plus one (the initial extent).

Once disk space has been allocated to a tbilspace as part of an extent, that
space remains dedicated to the tbispace. Even if all extent pages become
empty as a result of deleting data, the disk space remains unavailable for use
by other tables.

As OnLine administrator, you can reclaim the disk space in empty extents
and make it available to other users by rebuilding the table. You can accom-
plish this rebuilding in either one of two ways:

= Ifthe table with the empty extents includes an index, you can execute
the ALTER INDEX statement with the TO CLUSTER keywords.
Clustering an index rebuilds the table in a different location within
the dbspace. Any extents that remain completely empty after
rebuilding the table are freed and reentered onto the chunk free-list
page.

= If the table does not include an index, you can unload the table, re-
create the table (either in the same dbspace or in another), and reload
the data using OnLine utilities or the UNLOAD and LOAD state-
ments. (For further information about selecting the correct utility or
statement to use, refer to page 4-57.)

IBM Informix OnLine Database Server Administrator's Guide

Next Extent Allocation

Next Extent Allocation Strategies

Extent sizes double every 64 extents.

Chunk 6

64th extent ‘l

65th extent size is doubled

'\ Some other thlspace extent

I the dbspace is too full to accommodate the next extent size, OnLine allocates the
largest available contiguous block of disk space.

Chunk 1

3rd extent

H 4th extent

If the next extent is physically contiguous with an existing extent for the same
thispace, the disk space is treated as a single extent.

Chunk 1
3rd extent Next extent allocation
v Chunk 1

3rd extent

Figure 2-24

When one extent
fills, another is
automatically
allocated. Because
OnLine considers
several factors
during allocation,
the size of the next
extent may not
always be the size
specified in the
CREATE TABLE
statement.

System Architecture 2-119

Structure of a Dbspace Page

Structure of a Dbspace Page

The basic unit of OnLine I/0 is a page. Page size might vary among
machines. The page size for your machine is specified as BUFFSIZE in the
configuration file. You cannot modify the page size.

Pages in a dbspace are allocated in a group called an extent. Pages can be
categorized according to the type of information they contain. All pages
managed by OnLine adhere to a similar structure, although the function of
the page can alter slightly the size of structures within the page. Figure 2-25
illustrates the three structures that appear on every OnLine page:

= Page header (24 bytes including one 4-byte timestamp)
= Page-ending timestamp (4 bytes)
= Slot table (4 bytes per entry)

Figure 2-25
Page structure Every dbspace page
managed by OnLine
contains three

Page header structures: a page
(24 bytes) header, a page-
ending timestamp,
and a a slot table.

Free space in the page

Timestamp
(4 bytes)

Slot table
(4 bytes per entry)

2-120 IBM Informix OnLine Database Server Administrator's Guide

Structure of a Dbspace Page

Page Header
The page header includes six components:

= Page identification number (address of the page on disk)

= Number of slot table entries used on the page (used to calculate
where to locate the next slot table entry)

= Number of free bytes left on the page

= Pointer to the contiguous free space on the page that lies between the
last data entry and the first slot table entry

= Timestamp that changes each time the page contents are modified

= Two index-related pointers (used if the page is used as an index
page)

Timestamp

The page-header timestamp and the page-ending timestamp function as a pair to
validate page consistency. Each time the page contents are modified, a
timestamp is placed in the page header. At the end of the write, the header
timestamp is copied into the last four bytes on the page. Subsequent access to
the page checks both timestamps. If the two timestamps differ, this inconsis-
tency is reported as a part of consistency checking. (Refer to page 4-6 for
further information about consistency checking errors and corrective
actions.)

Slot Table

The slot table is a string of 4-byte slot table entries that begins at the page-
ending timestamp and grows toward the beginning of the page. The entries
in the slot table enable OnLine user processes to find data on dbspace pages.
Each entry in the slot table describes one segment of data that is stored in the
page. The number of the slot table entry is stored as a 1-byte unsigned integer.
The slot table entries cannot exceed 255. This is the upper limit on the number
of rows, or parts of a row, than can be stored in a single data page.

The slot table entry is composed of two parts:

= Page offset where the data segment begins
s Length of the data segment

System Architecture 2-121

Structure of a Dbspace Page

2-122

For example, in a data page, the slot table entry would describe the page
offset where the data row (or portion of a data row) starts and the length of
the row (or portion of a row). (Refer to the discussion of data row storage,
which begins on page 2-125, for more details about the function of the slot
table.)

The number of the slot table entry is stored as part of the data row rowid. The
data row rowid is a unique identifier for each data row. It is composed of the
page number where the row is stored and the number of the slot table entry
that points to that data row.

As part of a rowid, the number of the slot table entry is stored as a 1-byte
unsigned integer. Since the rowid cannot store a slot table entry greater than
255, this is the upper limit on the number of rows than can be stored in a
single data page.

(Refer to page 2-123 for more detailed information about the data row rowid
and the rowid structure.)

The slot table is the only OnLine structure that points to a specific location in
a data page. For this reason, OnLine can initiate page compression whenever
required, according to internal algorithms. Typically, page compression
changes the location of the data row in the page and, therefore, generates a
new page offset that is written into the slot table entry. However, the number
of the slot table entry remains fixed. Thus all forwarding pointers and
descriptor values that rely on a rowid value remain accurate. Refer to

page 2-132 for more information about page compression.

IBM Informix OnLine Database Server Administrator's Guide

Data Row Format and Rowid

Data Row Format and Rowid

OnLine can store rows that are longer than a page. OnLine also supports the
VARCHAR data type, which results in rows of varying length.

As aresult, rows do not conform to a single format. The following facts about
rows must be considered when OnLine stores data rows in a page:

= Rows within a table are not necessarily the same length.
= The length of a row may change when it is modified.
= The length of a row can be greater than a page.

= Blobs are not stored within the data row. Instead, the data row
contains a 56-byte descriptor that points to the location of the blob.
(The descriptor can point to either a dbspace blob page or a
blobspace blobpage.)

Refer to IBM Informix Guide to SQL: Tutorial for instructions about how to
estimate the length of fixed-length and variable-length data rows.

The term rowid refers to a unique 4-byte integer that is a combination of a
page identification number (the logical page number) and the number of an
entry in the slot table on that page. The rowid defines the location of a data
row. (Refer to page 2-121 for a definition of the slot table and how it stores the
location of a data row on a page.) The page that contains the first byte of the
data row is the page that is specified by the rowid. This page is called the data
row home page.

System Architecture 2-123

Data Row Format and Rowid

2-124

The rowid structure permits the length of the row and its location on a page
to change without affecting the contents of the rowid. Either change—a
change in length caused by an insert or a delete, or a change in location on
the page caused by OnLine page compression—is reflected in the entry
stored in the slot table. If the page where the data row is stored changes, a
forward pointer is left on the home page. In all cases, the rowid remains
accurate. Figure 2-26 illustrates the rowid format.

Figure 2-26

The rowid

format permits the
data length and
location on the

Rowid format

81 07 0 page to change
without

. . affecting the value

31 - 08 Logical page number where the data is located of the rowid.

0 - 07 Number of the slot table entry on this page

The logical page number describes the data row home page. The logical page
number is stored in the most significant three bytes of the rowid as an
unsigned integer. Logical pages are numbered relative to the tblspace. That
is, the first logical page in a tblspace is page 0. (Physical page numbers refer
to the address of the page in the chunk.) For example, if you create a table and
the resulting initial extent is located in the middle of a chunk, the physical
address of the first page in the extent represents the location in the chunk. The
logical address for the same page is 0. Since the largest number that can be
stored in the rowid is 16,777,215, this is the upper limit of the number of
pages that can be contained in a single tblspace.

Every OnLine data row is uniquely identified by an unchanging rowid. The
rowid is stored in the index pages associated with the table to which the data
row belongs. When a database server process requires a data row, it searches
the index to find the rowid and uses this information to locate the requested
row. If the table is not indexed, the database server process may sequentially
read all the rows in the table. Another possibility is that the server process
may build an implicit table that is indexed.

IBM Informix OnLine Database Server Administrator's Guide

Data Pages and Data Row Storage

Eventually, a row may outgrow its original storage location. If this occurs, a
forward pointer to the new location of the data row is left at the position
defined by the rowid. The forward pointer is itself a rowid that defines the
page and the location on the page where the data row is now stored. (Refer
to page 2-127 for further information about the role of the forward pointer in
row storage.)

Data Pages and Data Row Storage

The variable length of a data row has consequences for row storage:

= A page may contain one or more whole rows.

= A page may contain portions of one or more rows.

= A page may contain a combination of whole rows and partial rows.

= Anupdated row may increase in size and become too long to return
to its original storage location in a row.

The following paragraphs describe the guidelines OnLine follows during
data storage. Refer to page 2-121 for further information about the role of the
slot table in data storage. Refer to page 2-123 for further information about
the role of the rowid in data storage.

System Architecture 2-125

Data Pages and Data Row Storage

2-126

Single-Page Storage

Page header Complete data rows

;

>

Free space Slot table entries

IBM Informix OnLine Database Server Administrator's Guide

Timestamp

To minimize retrieval time, rows are not broken across page boundaries
unnecessarily. Rows that are shorter than a page are always stored as whole
rows. A page is considered full when the count of free bytes is less than the
number of bytes needed to store a row of maximum size. Figure 2-27 illus-
trates data storage when rows are less than a page.

Figure 2-27

Rows that are
shorter than a page
are stored as whole
rows.

Data Pages and Data Row Storage

Multipage Storage

When OnLine receives a row that is longer than a page, the row is stored in
as many whole pages as possible. The trailing portion is less than a full page.

The page that contains the first byte of the row is the row home page. The
number of the home page becomes the logical page humber contained in the
rowid. Each full page that follows the home page is referred to as a big-
remainder page. If the trailing portion of the row is less than a full page, it is
stored on a remainder page. Figure 2-28 illustrates the concepts of home page,
big-remainder page, and remainder page.

Figure 2-28
Data row represented in whole-page sized segments Data rows are

originally stored as
I | I aina’y

whole-page sized
segments,
Remainder page measured from the
leading end of the
data row.

Big-remainder page
|

Big-remainder page

Home page

When a row is longer than one page but less than two pages, the home row
contains a forward pointer to a remainder page. The forward pointer is
always stored as the first four bytes in the data portion of the page. The
forward pointer contains the rowid of the next portion of the row. A flag
value is added to the slot table entry of the data row to indicate that a pointer
exists.

When a row is longer than two pages, the home row and each big-remainder
page contain forward pointers to the next portion of the data row. Figure 2-25
illustrates data storage for rows that are longer than two pages.

System Architecture 2-127

Data Pages and Data Row Storage

2-128

Home page Forward pointer

Data

Slot table entry

Big-remainder page

p

Timestamp

Data
Big-remainder page
.
Data
Remainder page
Free space

Trailing portion of the data row

IBM Informix OnLine Database Server Administrator's Guide

Figure 2-29

Rows that are
longer than two
pages are stored in
home pages, big-
remainder pages,
and remainder
pages.

Data Pages and Data Row Storage

Storage of Modified Rows

When a row is modified, OnLine attempts to return the modified row to its
current location. If the row size is unchanged, no changes are needed in the
slot table. If the row is smaller than before, OnLine changes the slot table
entry for this row to reflect the new row length. If the row no longer fits,
OnLine attempts to store the row in another location on the same page. If
OnLine can do this, the slot table entry is changed to reflect both the new
starting offset and the new length of the row.

If the modified data row is shorter than a page but cannot be accommodated
on the current page, a 4-byte forwarding pointer (containing the new rowid)
is stored on the home page. The data row retains its original rowid, which is
stored in the index page. The data is moved to the new page and the space
freed by the move is available for other rows. Figure 2-30 illustrates data
storage if the updated row is too large for the home page but shorter than a
whole page.

System Architecture 2-129

Data Pages and Data Row Storage

. . Figure 2-30
1. Data storage before data is modified Updated rows that

no I(_)n_ger fit in their

original pages but
are shorter than a
full page receive a
Original row size and location forward pointer and
are stored on a

different page.

2. Data is modified

New, longer row after processing

3. Data storage after data is modified

Newly freed space

Forward pointer (rowid) to new location

Modified row

Modified slot table
entry for data row

If the modified data row is longer than a page, OnLine first begins to divide
the data into whole-page segments, starting from the tail end of the row.
OnLine then attempts to fit the leading segment plus four bytes (for the
forward pointer) into the current location of the row on the home page. If the
leading segment fits, the whole-page tail segments are stored in big-
remainder pages and forwarding pointers are added.

2-130 IBM Informix OnLine Database Server Administrator's Guide

Data Pages and Data Row Storage

If the leading segment cannot fit into the current location of the row on the
home page, OnLine divides the page into whole-page segments again, this
time beginning with the leading end of the row. OnLine stores only a
forwarding pointer in the current page location. The rest of the data row is
stored in whole-page segments on one or more big-remainder pages.
Forward pointers are added to each page. The trailing portion of the row is
stored on a remainder page. Figure 2-31 illustrates storage of an updated row

that is longer than a whole page.

System Architecture 2-131

Data Pages and Data Row Storage

1. Data storage before data is modified

Original row size and location

2. Data is modified

Modified row size is longer than a page

3. Data storage after data is modified

Leading segment of row

Forward pointer (rowid) to new location

Whole-page segment of the modified row

2-132 IBM Informix OnLine Database Server Administrator's Guide

Figure 2-31

An updated row
that is longer than a
full page can be
stored as a leading
segment, with a
forward pointer to a
big-remainder
page. If the leading
segment does not
fit in the current
page location, the
entire data row is
moved and only a
forward pointer is
left in the current
row position.

Structure of an Index Page

Page Compression

Over time, the free space on a page can become fragmented. When OnLine
attempts to store data, it first checks row length against the number of free
bytes on a page to determine if the row fits. If there is adequate space, OnLine
checks to see if the page contains adequate contiguous free space to hold the
row (or row portion). If the free space is not contiguous, OnL.ine calls for page
compression.

During page compression, a user process locates a free buffer in the shared-
memory buffer pool and copies to the buffer the data page header and page
timestamp. Then, starting from the first slot table entry, the user process
copies each slot table entry and its associated data, updating the slot table
information as the data is written to the buffer. When the process completes
the rewriting, the newly compressed page is written back to the data page.

As a result, all free space in the data page is contiguous and the row (or row
portion) is stored according to the usual procedure of writing the data and its
associated slot table entry.

Structure of an Index Page

OnLine employs a B+ tree structure for organizing table index information.
A fully developed index is composed of three different types of index pages:

= One root node page, which can contain pointers to branch pages,
pointers to leaf pages, or key values and rowids

= One or more branch node pages, which can contain pointers to leaf
pages or key values and rowids

= One or more leaf node pages, which can contain only key values and
rowids

Each type of index page serves a different function. The following
paragraphs describe each page and the role it plays in information storage.

Refer to IBM Informix Guide to SQL: Tutorial for a general discussion of how to
estimate the number of pages needed for a table index.

Refer to page 2-121 for a description of the slot table, which appears on every
index page.

System Architecture 2-133

Structure of an Index Page

2-134

Figure 2-33 through Figure 2-36 illustrate the progressive creation of a
complete index. A complete index is represented by Figure 2-36, which
displays a root page, four branch pages, and an unspecified number of leaf

pages.

The rules governing index creation, page splitting, and page merging are far
more complicated than the treatment provided in this manual. In addition,
this manual does not include topics such as index-traversing, latching, and
deadlock-avoidance strategies that OnLine employs during modifications.
This section provides general information only. For detailed information
regarding B+ tree operations, refer to the C-ISAM Programmer’s Manual.

When index pages become empty, either because the rows whose keys filled
an index page are deleted or because the index is dropped, the pages are
completely freed. Former index pages remain dedicated to the extent, but
they are marked as free on the extent bit map and are available for
reassignment to store data, blobs, or other index information.

The Root Node Page

When a user creates an index, OnLine creates a B+ tree for the specified table
if data exists in the table. If the table is empty, only the root node page is
created. In the following SQL example, a simple ascending index is created on
the Iname column:

CREATE | NDEX | ast name ON custoner (| nane)

If you are creating an index on an empty table, the first page of the index is
allocated as part of the statement execution, but it remains empty until data
is inserted into the table. The first page created is called the root node but, in
the beginning, the root node functions like a leaf node. As data is inserted
into the table, the first index page fills with an entry for each key value. The
index key value includes the rowid.

The index key value is composed of two parts:

= Abyte part, which expresses the value of the specified index key

= A rowid part, which contains one or more rowids to data rows that
share the same key value

IBM Informix OnLine Database Server Administrator's Guide

Structure of an Index Page

The byte part of the index key value is as long as needed to contain the value
of the index key. If the indexed data is a VARCHAR data type, the calculated
length of the index key is the maximum length plus 1. The additional byte is
a required-length byte, which precedes the VARCHAR data when it is stored
in the database. Therefore, the maximum VARCHAR that can be indexed is
254 bytes.

As an example of an index key value, consider row 101 in the table
stores5:customer. The Iname value of row 101 is Paul i . The index key value
for this Iname value is composed of a byte entry, Paul i , and a 4-byte rowid
entry for data row 101.

If two or more rows share the same Iname value, the rowid part of the index
key value is a list of rowids for rows that share this key value. In this way, the
bytes part remains unique within the index. Figure 2-32 illustrates the
concept of the index key value.

Figure 2-32
Index key values Index key
values contain two
n 3 0 parts: a byte part
- and one or more
bytes rowid rowids

n 7 3 0

bytes rowid rowid

When the first row of data is inserted into a table, the root node index page
receives one index key value and one 2-byte slot table entry. The root node
page serves as a leaf node page until it becomes full.

System Architecture 2-135

Structure of an Index Page

2-136

Figure 2-33 represents this initial phase of index storage. (Refer to page 2-121
for a general explanation of the function of the slot table. Refer to page 2-121
for more information about the page-header and page-ending timestamp

pair.)

Figure 2-33
Page header The first index page
fills with index key
values and slot
table entries until
Index key values there is no room for
an additional index
entry on the page.

At this point, the

first page splits into

Slot table entries Timestamp three pages.

Leaf Node Pages

When the first index page becomes full, the page splits into three pages: one
root node page and two leaf node pages. The root node page now contains
two index key value entries. Each entry is a pointer to the first data that
appears on one of the leaf pages.

In addition, the root page now includes a third entry called the infinity slot.
The infinity slot points to the node that contains all byte values greater than
the last value actually stored at this level. One infinity slot exists at the root
node level and at each branch node level. (Refer to page 2-138 for more infor-
mation about the root node infinity slot.)

Horizontal links exist between the two leaf pages. All nodes on the same level
are horizontally linked, branch-to-branch or leaf-to-leaf. The links are imple-
mented as pointers to the next page. These pointers, which are stored in the
branch or leaf page header, facilitate OnLine sequential reads.

IBM Informix OnLine Database Server Administrator's Guide

Structure of an Index Page

Following is an example of some sample data from the stores5:customer
table that is included in Figure 2-34 on page 2-137 and Figure 2-35 on
page 2-139.

Customer number

Last Name (Iname) (customer_num)
Albertson 114
Baxter 118
Beatty 113
Currie 103
Keyes 111
Lawson 112
Lessor 128
Miller 109
Neelie 126
O’Brien 122
Wallack 121
Watson 106

System Architecture 2-137

Structure of an Index Page

Figure 2-34 illustrates the root node page and the two leaf node pages that
result from a split after the root node fills.

Figure 2-34

After the root node
Page header page fills, it splits
into two leaf nodes.
The infinity slot
points to the node
that contains all
Infinity slot | | | byte values greater
than the last value

actually stored at
Leaf nodes

Root node

Albertson: leaf node address O'Brien: leaf node address

this level. In this
example, the
infinity slot points

E— W to all values greater

Header Horizontal Header

Link than O’Brien.

Key values from Albertson to Miller, Key values from O'Brien to Watson,
arranged in byte:rowid entries arranged in byte:rowid entries

Index Key Entries

Figure 2-34 includes index key entries on the root node index page that take
the following form:

= A byte value followed by one address of a branch or leaf node page
= Only a node address (the infinity slot)

In addition, a third form is possible:

= A byte value followed by a rowid, followed by two node addresses
(indicating a range of pages)

These three types of index key entries are described in the paragraphs that
follow. The entry types are illustrated in Figure 2-35 on page 2-139.

When the byte value is followed by a single branch or leaf node address, the
index key entry indicates that only one rowid exists for this byte value. The
byte-address pair entry points to the first data slot on the node page specified
by the address. The node page can be either a leaf node page or a branch node

page.

2-138 IBM Informix OnLine Database Server Administrator's Guide

Structure of an Index Page

When the byte value is followed by a rowid and two addresses, the index key
entry indicates that more than one data row shares the same byte value. The
two addresses are a range of pages. The first address specifies the node page
where the specified rowid (the first rowid with this key value) appears. The
second address points to the last node page that contains a rowid for this
same byte value.

One index key entry on the root node page contains only an address. That
data slot is referred to as the infinity slot. The infinity slot always points to the
next level beneath, to the node that contains all values greater than the last
value stored at this current level.

In general, the far-right slot (the last one) of the far-right node at every
nonleaf level is an infinity slot.

System Architecture 2-139

Structure of an Index Page

- Figure 2-35
Root node index page To aid
figure uses last

Smith 542 1054 1056
names and
Tsonga 1087 customer numbers

as index key values
instead of a bytes
part and a rowid.

understanding, this

The Tsonga root-
page entry
represents a single-

Address 1054 Address 1087 byte value and
g rowid, indicating
Smith 542, 639, 790, Tsonga 523 the first entry on a
148,232, 193... branch page. The
T Smi t h root-page
\I entry represents a
byte value, rowid,
Address 1099 and two page
addresses,
256, 385, 786, 646, Watson 106 indicating a range
611, 577... of pages that
T contain rowids for
the same byte
\ value. The last
pdrss 105¢ representa the
I pinfinity slot
459, 475, 513, :
193, 821
[T
Last Name Customer number
(Iname) (customer_num)
Smith 148, 193, 232, 256, 385, 459,

475, 513, 542, 577, 598, 611,
639, 646, 773. 786,790,821

Tsonga 523

Watson 106

2-140 IBM Informix OnLine Database Server Administrator's Guide

Structure of an Index Page

Branch Node Pages

The first index branch node is created after the root node and at least two leaf
nodes exist. Regardless of which page fills first, either the root node or one of
the leaf nodes, the result is the creation of a branch node.

If the root node becomes full, it splits and creates two branch nodes, each
with half of the root node entries. The root node retains only three entries: one
pointer to each of the branch nodes and one to the infinity slot.

If one of the leaf nodes becomes full, it splits into two leaf nodes and one
branch node.

Splitting logic is one of the most complicated aspects of index maintenance.
It is not described in detail here. Figure 2-36 illustrates an index with a root
node, two branch nodes, and several leaf nodes.

System Architecture 2-141

Structure of an Index Page

|

Figure 2-36
Root node header node address This representation
key: node address of a complete index

includes a root
node, selected

key: rowid, node, node branch nodes. and
: infinity | slottable [tmstp selected leaf nodes.

eader | node address
Branch nodes header\ node

key: node address

heade | node address e | tn;(stp

header | node address Stp
key: node address

tmstp

key: rowid, node, node
| sléttable |/ tmstp

header key, rowid
rowid, rowid, rowid
rowid, rowid, rowid
rowid, rowid, rowid

slot table tmstp

header key, rowid

key, rowid

key, rowid, rowid

key, rowid, rowid, rowid

slot table tmstp

header key, rowid Leaf nodes
key, rowid
key, rowid
key, rowid

slot table tmstp

2-142 IBM Informix OnLine Database Server Administrator's Guide

Structure of a Dbspace Bit-Map Page

Structure of a Dbspace Bit-Map Page

Extents contain one or more bit-map pages that track free pages in the extent.
Each bit-map entry describes the fullness of one page in the extent. The
number of bit-map pages needed for an extent depends on three variables:

= Number of pages in the extent, which affects the number of bit-map
entries needed

= Page size, which affects the number of bit-map entries that can fit on
a page

= Type of the bit-map entries, which depends on the type of data stored
on the page

All bit-map pages are initialized and linked when the extent is allocated. The
bit-map pages are scattered throughout the extent. The first page in the
extent, and every (n +1)th page thereafter, is designated as a bit-map page,
where n is the number of bit-map entries that fit on a single page. The pages
described by a bit-map page can span extents.

OnLine uses two types of bit-map pages, a 2-bit bit-map page (which
contains 2-bit entries) and a 4-bit bit-map page (which contains 4-bit entries).

2-Bit Bit-Mapped Pages

The 2-bit bit-map pages track available space in extents allocated to tables
that meet two criteria:

= The table contains fixed-length rows that are smaller than a page.
= The table does not contain VARCHAR, BYTE, or TEXT data types.

System Architecture 2-143

Structure of a Dbspace Bit-Map Page

2-144

Two bits are all that are needed to describe page fullness for these limited
conditions, as illustrated here.

Bit Values

Description of Page Fullness

00
10
01
11

Page is unused
Page is used completely (index page)
Page is partially used (data page)

Page is full (data page)

4-Bit Bit-Mapped Pages

The 4-bit bit-map pages track available space in extents allocated to tables
that contain rows longer than a page, or rows that include VARCHAR, BYTE,
or TEXT data types. Four bits are needed to describe all possible combina-
tions of page fullness for these extents, as illustrated below. The terms used
to describe page fullness describe row segments as whole-page, partial-page,
and small. These segment sizes are relative to available free space and are
selected on the basis of performance.

Bit Values

Description of Page Fullness

0000
0100
1000
1100
0001
0101
1001
1101
0010

Page is unused

Home data page has room for another data row
Page is used completely (index page)

Home data page is full

Remainder page, can accept whole-page segments
Remainder page, room for partial-page segments
Remainder page, room for small segments
Remainder page, no room for even small segments

Blob page, can accept whole-page segments

(1of2)

IBM Informix OnLine Database Server Administrator's Guide

Blob Storage and the Blob Descriptor

Bit Values Description of Page Fullness

0110 Blob page, room for partial-page segments
1010 Blob page, room for small segments

1110 Blob page, no room for even small segments

(2 of2)

Blob Storage and the Blob Descriptor

Data rows that include blob data do not include the blob data in the row itself.
Instead, the data row contains a 56-byte blob descriptor that includes a
forward pointer (rowid) to the location where the first segment of blob data
is stored. The descriptor can point to a blob page (if the blob is stored in a
dbspace) or a blobpage (if the blob is stored in a blobspace).

Following is the structure of the 56-byte blob descriptor:

typedef struct thblob
{

short tb_fd; /* blob file descriptor (nust be first) */
short tb_col of f; /* Blob colum offset in row */

| ong tb_t bl space; /* blob table space*/

| ong tb_start; /* starting byte*/

| ong tb_end; /* ending byte: O for end of blob */
| ong tb_size; /* Size of blob */

| ong tb_addr; /* Starting Sector or BlobPage */

| ong thb_famly; /* Fam |y Nunber (optical support)*/
| ong tb_vol ung; /* Family Vol une */
short tb_medi um /* Medium- one if optical */

short tb_bst anp; /* first Bl obPage Bl ob stanp */
short t b_socki d; /* socket id of renote bl ob*/

short tb_fl ags; /* flags */

| ong tb_sysid; /* optical systemidentifier*/

| ong tb_reserved2; /* reserved for the future*/

| ong tb_reserveds3; /* reserved for the future*/

| ong tb_reserved4; /* reserved for the future*/

} tblob_t;

When a row containing blob data is to be inserted, the blobs are created first.
After the blobs are written to disk, the row is updated with the blob
descriptor and inserted.

System Architecture 2-145

Structure of a Dbspace Blob Page

2-146

Blobs are never modified: only inserted or deleted. When blob data is
updated, a new blob is created and the data row is updated with the new blob
descriptor. The old image of the row contains the descriptor that points to the
obsolete blob value. The obsolete blob is deleted after the update is
committed. Blobs are automatically deleted if the rows containing their blob
descriptors are deleted. (Blobpages that stored a deleted blob are not
available for reuse until the logical log in which the COMMIT logical log
record appears is freed. For more information, refer to page 2-157.)

The largest blob that the blob descriptor can accommodate is (2 - 1), or
about 2 gigabytes. This limit is imposed by the 4-byte integer that defines the
size of the blob in the blob descriptor. In practice, blob size is probably limited
at a size less than 2 gigabytes because of the number of available OnLine
locks that would be required during blob storage.

Structure of a Dbspace Blob Page

Blob data that is stored in the dbspace is stored in a blob page. The structure
of a dbspace blob page is similar to the structure of a dbspace data page. The
only difference is an extra 12 bytes that might be stored along with the blob
data in the data area.

Blobs can share dbspace blob pages if more than one blob can fit on a single
page or if more than one trailing portion of a blob can fit on a single page.
Refer to IBM Informix Guide to SQL: Tutorial for a general discussion of how to
estimate the number of dbspace blob pages needed for a specific table.

Each segment of blob data stored in a dbspace page may be preceded by up
to 12 bytes of information that do not appear on any other dbspace page.
These extra bytes contain up to three pieces of information:

= A 4-byte blob timestamp for this blob segment (required)

= A 4-byte forward pointer (rowid) to the next portion of the blob
segment, if one exists (optional)

= A4-byte blob timestamp stored with the forward pointer to the next
portion of the blob segment (required if a forward pointer exists)

IBM Informix OnLine Database Server Administrator's Guide

Structure of a Dbspace Blob Page

For more information about the role of the blob timestamps in maintaining
the consistency of the blob data, refer to page 2-44. Figure 2-37 illustrates blob

data storage in a dbspace.

Blob timestamp and forward-pointer information

I Page header -

Blob data segment (first part)

Blob timestamp

Slot table entry

Timestamp

I Page header

Blob data segment (trailing part)

Blob data segment

Free space

M _

Figure 2-37

Extra information is
stored with the blob
data. This extra
information
includes a forward
pointer if the blob is
larger than a page.
More than one blob
data segment can
share a dbspace
blob page.

System Architecture 2-147

Blobspace Page Types

2-148

Blobspace Page Types
Every blobspace chunk contains three types of pages:

= Blobspace free-map page
= Bit-map page (which tracks the blobspace free-map pages)
= Blobpage

Blobspace Free-Map Page

The blobspace free-map page locates unused blobpages and allocates them as
part of blob creation. When a blobpage is allocated, the free-map entry for
that page is updated. All entries for a single blob are linked.

A blobspace free-map page is the size of one page (specified as BUFFSIZE in
the configuration file). Each entry on a free-map page is 8 bytes, stored as two
32-bit words:

= Thefirst bitin the first word specifies whether the blobpage is free or
used.

= The next 31 bits in the first word identify the logical log that was
current when this blobpage was written. (This is needed for
blobpage logging when the logical log file is backed up. Refer to
page 4-26.)

= The second word contains the tblspace humber associated with the
blob stored on this page.

The number of entries that can fit on a free-map page depends on the page
size of your machine. The number of free-map pages in a blobspace chunk
depends on the number of blobpages in the chunk.

Blobspace Bit-Map Page

The blobspace bit-map page tracks the fullness and number of blobspace
free-map pages in the chunk. Each blobspace bit-map page is capable of
tracking a quantity of free-map pages that represent more than four million
blobpages. Each blobspace bit-map page is the size of one page (specified as
BUFFSIZE in the configuration file).

IBM Informix OnLine Database Server Administrator's Guide

Structure of a Blobspace Blobpage

Blobpage

The blobpage contains the blob data. Blobpage size is specified by the OnLine
administrator who creates the blobspace. Blobpage size is specified as a
multiple of the page size: for example, four times BUFFSIZE or 20 times
BUFFSIZE.

(Refer to page 5-5 for further information about selecting blobpage size. Refer
to page 2-148 for further information about the structure of a blobspace
blobpage.)

Structure of a Blobspace Blobpage

Blobs in a blobspace do not share pages. (This differs from the storage
strategy used to store blobs in a dbspace. Refer to page 2-145.) OnLine does
not combine whole blobs or portions of a blob on a single blobpage. For
example, if blobspace blobpages are 24 KB, each blob that is 26 KB is stored
on two 24-kilobyte pages. The extra 22 KB of space remain unused.

The structure of a blobpage includes a blobpage header, the blob data, and a
page-ending timestamp. The blobpage header includes, among other infor-
mation, the page-header timestamp and the blob timestamp associated with
the forward pointer in the data row. If a blob is stored on more than one
blobpage, a forward pointer to the next blobpage and another blob
timestamp are also included in the blobpage header. (Refer to page 2-44 for
more information about the role of the page-header and page-ending
timestamp pair and the blob timestamp pair.)

System Architecture 2-149

Structure of a Blobspace Blobpage

2-150

Figure 2-38 illustrates the structure of a blobpage.

Figure 2-38

Blobpage structure General
structure of a

Page header - blobpage. The size

of a blobpage must
be a multiple of the

page size.
Blob data segment

Free space

Timestamp

The blobpage header includes the following information:

The physical address of the blobpage

A page-header timestamp that indicates the last time this blobpage
was modified

A forward pointer to the blobpage that holds the next segment of
blob data and an associated blob timestamp, if a next segment exists;
otherwise, only the current page number appears, indicating this is
the last page

A blob timestamp that describes the last time this page was allocated
(when blob data was written to the page)

The size of this blobpage
A percentage of blobpage fullness

A unique identifier that is written when a blobpage is written to tape
(used only during the data restore procedure)

IBM Informix OnLine Database Server Administrator's Guide

Structure of a Blobspace Blobpage

Figure 2-39 illustrates the different locations of the two pairs of timestamps
that appear on the blobspace blobpage.

Before the blob is overwritten

Blob descriptor

003

Blob timiW

Blob data segment

Free space

74

After the blob is overwritten

Blob descriptor

004

el

Header

Blob data segment

Free space

96

W

Page-header and page-ending timestamps

System Architecture

Figure 2-39

Blob

timestamps
register the most-
recent point in time
when this blobpage
was allocated.
Page-header and
page-ending
timestamps
validate page
consistency and
confirm that the
page write was
successful.

2-151

Physical Log

Physical Log

The function of the physical log is to maintain a set of “before-images” of
dbspace pages that represent a time at which all data is both physically and
logically consistent. The physical log “before-images” can be combined with
the logical log records of transactions to recover all transactions that occurred
since the most-recent point of known consistency. The point of known
physical consistency in an OnLine database server system is called a check-
point. The physical log is used in the first phase of fast recovery when OnLine
returns the entire system to the state of the most-recent checkpoint (the point
of known physical consistency).

For further information about the role of the physical log in fast recovery,
refer to page 4-39. For further information about the checkpoint procedure,
refer to page 2-72.

When OnLine is initialized, the physical log is created in the root dbspace.

After OnLine has been taken to quiescent mode, you can move the physical
log to another dbspace. You may want to do this to try to improve perfor-
mance. Refer to page 1-47.

The location of the physical log is specified in the configuration file
parameter PHYSDBS. This parameter should be changed only if you decide to
move the physical log file from the root dbspace. Otherwise, the parameter
contains the name of the root dbspace by default.

The size of the physical log is specified, in kilobytes, in the configuration file
parameter PHYSFILE.

For further information about changing the physical log location and size,
refer to page 3-107.

The physical log is a set of contiguous disk pages, each of which contains a
copy of a specific OnLine page. The OnLine pages in the physical log can be
any OnL.ine page except a blobspace blobpage. Even overhead pages such as
chunk free-list pages, blobspace free-map pages, and blobspace bit-map
pages to the free-map pages are all copied to the physical log before data on
the page is modified and flushed to disk.

2-152 IBM Informix OnLine Database Server Administrator's Guide

Physical Log

Blobspace blobpages do not appear in the physical log because blobs are
logged differently than all other data types. (For further information about
blobspace logging, refer to page 4-22.)

The first time following a checkpoint that a page is modified, the “before-
image” of the page is written to the physical log buffer in shared memory:.
Before the modified page can be flushed to disk from the shared-memory
buffer pool, the “before-image” of the page must be flushed from the physical
log buffer to the physical log. Only the first modification causes a “before-
image” to be written to the physical log. These precise rules are required for
fast recovery. (Refer to page 2-73 for more details about required coordi-
nation for writing “before-images” and flushing the logical log buffer.)

The physical log begins filling after each OnLine checkpoint. Immediately
after the checkpoint occurs, OnLine data is at a point of known physical
consistency, and the physical log “before-images” are no longer needed. (This
is true even for ongoing transactions. If a transaction must be rolled back, all
the information required for the rollback is contained in the logical log files.)

The checkpoint procedure empties the physical log by resetting a pointer in
the physical log that marks the beginning of the next group of required
“before-images.” OnLine manages the physical log as a circular file,
constantly overwriting unneeded data.

The checkpoint procedure is the only mechanism that empties the physical
log. If the physical log becomes 75 percent full, this event, in itself, initiates a
checkpoint.

The physical log should not fill during a checkpoint if you have followed the
sizing guidelines for the physical log and the logical log files. However, it is
possible to imagine a scenario in which this could occur.

Under normal processing, once a checkpoint is requested and the checkpoint
begins, all user processes are prevented from entering critical sections of
code. (Refer to page 2-27 for more details about critical sections.) However,
user processes currently in critical sections can continue processing. It is
possible for the physical log to become full if many processes in critical
sections are processing work and if the space remaining in the physical log is
very small. The many writes performed as processes completed their critical
section processing could conceivably fill the physical log.

System Architecture 2-153

Logical Log Files

This same unlikely scenario could occur during the rollback of a long trans-
action even after the LTXEHWM is reached. (Refer to page 2-158 for more
details about the long transaction exclusive high-water mark.) After the
LTXEHWM is reached, and after all processes have exited critical sections,
only the database server process that is performing the rollback has access to
the physical and logical logs. However, if many processes were in critical
sections, and if the space remaining in the physical log were very small at the
time the LTXEHWM was reached, it is conceivable that the writes performed
as user processes completed their processing could fill the physical log
during the rollback.

Logical Log Files

The function of the logical log is to store a record of changes to OnLine data
since the last OnLine archive. OnLine manages the logical log as three or
more separate allocations of disk space, each of which is referred to as a
logical log file. Each logical log file is associated with a unique identification
number.

Refer to page 3-13 for a listing of logical log administration topics.

Fast Recovery and Data Restore

The logical log records can be applied to the OnLine system to recover all
transactions that occurred since the most-recent point of known physical
consistency. The point of known consistency in an OnLine database server
system is called a checkpoint. The logical log records are used in the second
phase of fast recovery when OnLine returns the entire system to a state of
logical consistency up to the point of the most-recent logical log record.

For further information about the role of the logical log in fast recovery, refer
to page 4-39. For further information about checkpoints, refer to page 2-70.
For further information about how to display the logical log records, refer to
page 7-51.

Backup tapes of the logical log files can be combined with the most-recent
OnLine archives to re-create the OnLine system up to the point of the most-
recent logical log record.

2-154 IBM Informix OnLine Database Server Administrator's Guide

File Rotation

For further information about what happens during a logical log backup that
makes this possible, refer to page 4-26. For further information about what
happens during an OnLine restore with archive and logical log backup tapes,
refer to page 4-45.

File Rotation

OnLine safeguards the logical log records by requiring that a full logical log
file is marked with a status of used until it is backed up to tape and it is no
longer needed for fast recovery. This second requirement is met if all the
records in the logical log file are associated with closed transactions. If both
of these conditions are met, the logical log file is marked with status f r ee and
it can be overwritten with new logical log records.

During processing, OnLine fills free logical log files in numeric sequence.
When the first logical log file becomes full, OnLine begins to fill the next free
log file. If the status of the next log file in the sequence isused instead of f r ee,
normal OnLine processing is suspended. OnLine cannot skip the used log file
and begin filling some other, free log file. It is the OnLine administrator’s
responsibility to ensure that free logical log files are always available during
processing.

OnLine requires a minimum of three logs to facilitate the rotation of the
logical log files. While one log file receives the current records, OnLine might
be backing up another log to tape. The third log is needed in case the current
log fills before the backup is complete. (This is similar to the strategy that is
used with the three logical log buffers.) (Refer to page 3-27 for more infor-
mation about logical log ID numbers and logical log file numeric sequence.
Refer to page 3-39 for more information about how to free a logical log file.)

The logical log backup tape is labeled with the unique number of the logical
log it contains. The logical log ID numbers increment each time a log is filled.
For example, in an OnLine configuration that contains three logical logs, the
log files receive the identification numbers 1, 2, and 3. The first time that
logical log file 1 is freed for reuse, it becomes logical log 4. The second time,
it will become logical log file 7. (For further information about logical log
identification numbers and logical log backup, refer to page 3-27.)

System Architecture 2-155

File Contents

File Contents

The logical log files contain five types of records:

= SQL data definition statements for all databases

= Record of a checkpoint

= Record of a change to the configuration

= SQL data manipulation statements for databases that were created
with logging

= Record of a change to the logging status of a database

The logical log files receive the first three types of records during processing
even if no databases are created with transaction logging. Logical log records
can span OnLine pages, but they cannot span logical log files.

Number and Size

The configuration file contains two parameters that describe the logical log
files:

= LOGFILES specifies the number of logical log files.
m LOGSIZE specifies the size of each logical log file.

As OnLine administrator, you decide on the optimum total size of the logical
log: LOGFILES * LOGSIZE. The optimum size for the logical log files in your
OnLine environment is based on the length of individual transactions. Your
goal is to reduce the likelihood that any single transaction will span a large
percentage of logical log space, creating a long transaction error. (Refer to
page 2-158.)

When OnLine is initialized, the logical log files are created in the root
dbspace.

After OnLine has been taken to quiescent mode, you can drop one or more

logical log files from the root dbspace and add one or more logical log files to
another dbspace. You might want to do this to try to improve performance.
(Refer to page 1-47.)

2-156 IBM Informix OnLine Database Server Administrator's Guide

Number and Size

You cannot change the size of the logical log files after OnLine disk space is
initialized. If a logical log file is dropped, the disk space formerly occupied
by the file is freed and added to the chunk free-list page.

For further information about logical log management and administration,
refer to page 3-13.

As OnLine administrator, you determine the size of each logical log file and
the total disk space allocated for the log.

The minimum amount of disk space that must be allocated to each logical log
file is 200 KB.

The minimum number of logical log files is three. The maximum number of
logical log files is determined by the number of logical log descriptors that
can fit on a page. For a 2-kilobyte page, the maximum number is about 60.

Four factors influence the size and duration of a single transaction:

» Size of the logical log records

= Length of time the transaction is open

= Activity levels in the CPU and the logical log
= Frequency of transaction rollbacks

The sizes of the logical log records vary, depending on both the processing
operation and the current OnLine environment. In general, the longer the
data rows, the larger the logical log records.

Beyond this, other factors can contribute to the size and duration of a single
transaction. For example, a single ALTER TABLE statement generates a logical
log record for each insert into the new, altered table. Both row size and table
size affect the number and length of the logical log records generated. In
other situations, row size is irrelevant. A checkpoint record in the logical log
contains an entry for each open transaction at the time of the checkpoint. The
size of the checkpoint record reflects the level and type of current database
activity, not any specific row size.

System Architecture 2-157

Blobspace Logging

2-158

The duration of a transaction is a key variable that might be beyond your
control. An application that does not require much space for logical log
records might generate long transaction errors if the users permit transac-
tions to remain open for long periods of time. The more logical log space is
available, the longer a transaction may be permitted to remain open before a
long-transaction error condition develops. (Refer to page 2-158 for further
information about long transactions.)

The amount of CPU activity can affect the ability of OnLine server processes
to complete the transaction. Repeated writes to the logical log file increase the
amount of CPU time each server process needs to complete the transaction.
Increased logical log activity can imply increased contention of logical log
locks and latches as well. (This is the reason you might want to move your
logical log files from the root dbspace to another, less active, dbspace.)

The frequency of rollbacks affects the rate at which the logical log fills. The
rollbacks themselves require logical log file space, although the rollback
records are small. In addition, rollbacks increase the activity in the logical log.

The number of logical log files affects the frequency of logical log backups
and, consequently, the rate at which blobspace blobpages can be reclaimed.
Blobspace blobpages emptied after a DELETE statement cannot be freed for
use by other blobs until the log file in which the DELETE statement is occurs
is freed.

Blobspace Logging

OnLine uses the information that is stored in the logical log to help it track
and log blobs stored in a blobspace. This creates some cause-and-effect
relationships that may not be immediately obvious to the administrator. The
method that OnLine uses to log blobspace blobs is described on page 4-22.
(To compare blobspace logging to dbspace logging, refer to page 4-18 for an
overview, and page 4-19 for description of what happens during dbspace
logging.) The paragraphs that follow highlight the interaction between the
logical logs and management of blobspace blobs.

The status of a logical log can affect the availability of disk space in
blobspaces. Even after a transaction that deleted blobs is committed, the
blobspace blobpages that stored those blobs are not marked as free until the
logical log file containing the transaction record is marked as free.

IBM Informix OnLine Database Server Administrator's Guide

Long Transactions

To free a logical log, the log must be backed up to tape and all records with
the logical log must be part of closed transactions. If any record in the log is
part of an open transaction, the log file cannot be freed.

The backup strategy for OnLine requires that the statement that creates a
blobspace and the statements that insert blobs into that blobspace must
appear in separate logical log files.

Therefore, after you create a blobspace, you must switch to a new logical log
before you can insert a blob into that blobspace. Execute tbmode -1 to switch
to a new logical log.

The blobspace logging procedure affects the way that blobspaces are treated
during an archive. During an archive, the tbtape process blocks allocation of
blobspace blobpages in a chunk until it has read the chunk and archived all
used blobpages therein. As soon as the chunk is archived, blobpage
allocation in that chunk resumes.

One implication of this procedure is that during an online archive, blobs
cannot be inserted into a blobspace until the blobspace chunk has been
archived. Since chunks are read and archived by tbtape in order of the chunk
identification numbers, you can minimize this inconvenience by creating
blobspaces early, ensuring them a low chunk ID number.

To understand why the archive must block allocation, refer to page 4-30 for a
full description of what happens during an archive.

Long Transactions

A long-transaction condition occurs when the logical log fills past the mark
specified by the first long-transaction high-water mark, LTXHWM. The source of
the long-transaction condition is an open transaction that is preventing the
operator from freeing logical log files to create additional free space in the
log. (No log file can be freed if any records in the file are associated with an
open transaction.) The open transaction might not be generating many
logical log records itself; the problem might be the duration of the trans-
action. If the open transaction spans several logical log files, records written
by other processes can fill the logical log while the open transaction prevents
individual logical log files from becoming free.

System Architecture 2-159

Long Transactions

The second long-transaction high-water mark, LTXEHWM, indicates that the
logical log has filled to a critical level. Most user processes are denied access
to the logical log. Only user processes currently rolling back transactions
(including the long transaction) and database server processes currently
writing COMMIT records are allowed access to the logical log. The intentis to
preserve as much space as possible for rollback records being written by the
user processes that are rolling back transactions.

If LTXHWM is defined as 50, a long transaction condition exists when 50
percent of the logical log space is considered “used.” The problem presented
by the long transaction is this: to increase the amount of free space in the
logical log, you must free one or more of the logical log files. However,
OnLine cannot free a logical log file until all the transactions associated with
the records in the file are closed. If a single transaction stays open for an
extended period of time, OnLine cannot free the log file where that trans-
action began. Because OnLine writes to the logical log files in a sequential
order, if OnLine tries to write in the next log file and finds that it is “used,” all
OnLine processing is suspended. OnLine cannot skip over a used logical log
file to find another that is free.

When the logical log fills to the high-water mark specified by LTXHWM, the
tbinit daemon begins searching for an open transaction in the oldest, used
(but not freed) logical log file. If a long transaction is found, tbinit directs the
executing database server process to begin to roll back the transaction. More
than one transaction may be rolled back if more than one long transaction
exists.

The transaction rollback itself generates logical log records, however, and as
other processes continue writing to the logical log, the log continues to fill.
The goal is to free the oldest used logical log file before the log fills to a critical
point.

As the logical log continues to fill, it might reach a second high-water mark
specified as the exclusive-access, long-transaction high-water mark. This second
boundary is specified by the LTXEHWM configuration file parameter. The
default value of LTXEHWM is 60 percent.

If the logical log files fill to the point defined by LTXEHWM, most OnLine
server processes are denied access to the current logical log file. Only
database server processes that are rolling back transactions are allowed to
write to the file. (If a database server process is currently writing a COMMIT
record or is currently rolling back a transaction, it is allowed to continue.)

2-160 IBM Informix OnLine Database Server Administrator's Guide

Long Transactions

If the transactions cannot be rolled back before the logical log fills, OnLine
shuts down. If this occurs, you must perform a data restore. During the data
restore, you must not roll forward the last logical log file. Doing so re-creates

the problem by filling the logical log again.

System Architecture 2-161

Operating OnLine

InThisChapter 3-5
Changing Modes . . . Ce e 3-6
Types of OnLine Modes Ce e 3-6
OfflineMode L. 3-7
QuiescentMode L. 3-7
OnlineMode 3-7
RecoveryMode 3-7
ShutdownMode 3-7

From Offline to Quiescent 3-8
From Offlineto Online 3-8
From QuiescenttoOnline 3-9
Gracefully from Online to Quiescent 3-10
Immediately from Online to Quiescent 31
From Any Mode Immediately to Offline 3-12
Logical Log Administration. . . e R
Examine Your Logical Log Conflguratlon o S}
Your ConfigurationFile 314
Logical Log FileBackups 314
Freeing the Logical Log Files 315

Verify the Size and Number of Files 3-15
Configuration Parameters. 3-16
LTAPEBLK and LTAPESIZE 317
Location of Logical Log Files. 318
Change Pathname of Logical Log Tape DeV|ce Co. 318
Change Block Size of Logical Log Tape Device 321
Change Tape Size of Logical Log Tape Device 322
Change Maximum Number of Logical Log Files 3-23

Change Size of Logical LogFiles. 324

Logical Log FileStatus 326

Logical Log File ID Numbers 327
Add a Logical LogFile 328
Drop a Logical Log File 330
Move a Logical Log File to Another Dbspace e E !
Change the Logging Status of a Database 3-33
Adding Logging to a Database 334
Ending or Modifying Logglng from DB- Monltor 335
ANSI Compliance . . . e e 336
Back Up a Logical LogFile 336
Start Continuous Logical Log Backup 337
End Continuous Logical LogBackup 338
Switch to the Next Logical LogFile 339
Free a Logical LogFile 339
Long Transactions 340
StatusA s s 3
StatusU 0 34
StatusU-B 34
StatusU-C 0000 34
Status U-B-L . . . -

If the Logical Log Backup Cannot Complete e e 342
Archive Administration 343
Archive Types 343
Level-0 Archive 344
Level-1 Archive 345
Level-2 Archive)
Incremental Archive Strategy .)
How Long Will an Archive Take?. 346
Plan the Archive Schedule 347
Minimize Restore Time. 348
Minimize Archive Time. 349
Online Archives 349
Single Tape Drive. 349
Operator Availability . . . Ce 350
Examine Your Archive Conflguratlon Co. 3h0
Your ConfigurationFile. 350
The Archives . . . e, Y
TAPEDEV Conflguratlon Parameter T X
TAPEBLK and TAPESIZE 35b2

3-2 IBM Informix OnLine Database Server Administrator's Guide

Change Pathname of Archive Tape Device 352

Change Block Size of Archive Tape Device 355
Change Tape Size of Archive Tape Device 356
Create an Archive, Any Type. . . . e 1
If the Logical Log Files Fill During an Archlve ..o 359
Two Tape Drives. 359
One Tape Drive . . . e 360

If an Archive Terminates Prematurely e 360
Monitor OnLine Activity36l
Monitor Archive History 361
Monitor Blobs in a Blobspace 3-63
Monitor BlobsinaDbspace 365
Monitor Buffers 366
tbstat-b. 366
tbstat-x . 366
tbstat-B. 367
tbstat-p. . . C e e 3eY
Monitor Buffer-Pool Act|V|ty e . e 368
tbstat-F. 368
tbstat-R 369
tbstat-D 369
Monitor Checkpoints 369
Monitor Chunks370
Monitor Configuration Informatlon e
Monitor Databases 374
Monitor Dbspaces 375
Monitor Disk Pages37
Monitor Extents 378
Monitor Index Information 379
Monitor Logging Activity. 380
Monitor the MessagelLlog38
Monitor OnLine Profile. 383
Monitor Shared Memory and Latches. 3-84
Monitor Thlspaces . . . N I
Monitor Users and Transactlons e 386

Operating OnLine 3-3

Modify OnLine Configuration 387

Create aBlobspace. 388
Drop a Blobspace . . . e e s s 3
Change the Number of Buffers in the Pool Coe e 392
Change the Size of Either Log Buffer 393
AddaChunk L]
Change the Maximum Number of Chunks e 396
CreateaDbspace 397
Drop a Dbspace. . . . Ce e s 399
Enforce/Turn Off ReS|dency for ThIS Sessmn 3100
Enforce/Turn Off Residency 3100
Change the Status of a Mirrored Chunk s S0k
Enable Mirroring 3104
Start/End Mirroring in a Blobspace or Dbspace. 3105
Preliminary Considerations 3105
Start Mirroring. 3105
End Mirroring 3los
Change Physical Log Locatlon or Slze . S oY
Change the Checkpoint Interval Co. 3109
Change the Destination of Console Messages Co. 3110
Change the Maximum Number of Dbspaces. 3-111
Change the Maximum NumberofLocks 3112
Change the Maximum Number of Tblspaces. 3-113
Change the Maximum NumberofUsers 3114
Change the Number of Page Cleaners 3115
ThingstoAvoid . 3ll6

3-4 IBM Informix OnLine Database Server Administrator's Guide

In This Chapter

Occasionally, administrators conceive of a shortcut that seems like a good
idea. Because of the complexity of OnLine, an idea that appears to be an
efficient time-saver can create problems elsewhere during operation. The last
section in this chapter, “Things to Avoid,” attempts to safeguard you from
bad ideas that sound good.

You start up and shut down OnLine by changing the mode. The first section,
“Changing Modes,” describes each OnLine mode and how to move OnLine
from one mode to another.

Logical log administration is required even if none of your databases use
transaction logging. Half of logical log administration is configuration; the
other half is backing up the logical log files.

Instructions for modifying the logical log configuration, and for creating and
maintaining the logical log backup tapes, are provided in the second section,
“Logical Log Administration.”

At the heart of archive administration is the archive schedule. The third
section, “Archive Administration,” provides you with advice and guidelines
for scheduling and coordinating archive activity with other tasks. Archive
administration also includes your configuration decisions regarding the
archive tape device. Creating and maintaining the archive tapes is the third
major topic covered in this section.

OnLine design enables you to monitor every aspect of operation. The next
section, “Monitor OnLine Activity,” groups available information under 19
general topics listed on page 3-61. For each topic, you are provided with
descriptions of the available information, instructions for how to obtain it,
and suggestions for its use.

Operating OnLine 3-5

Changing Modes

3-6

In the final section, “Modify OnLine Configuration,” configuration-changing
actions are divided into eight categories, according to the area of OnLine that
is affected:

Blobspaces (creating or dropping)

Buffers (changing the size of the logical or physical log buffer, or
changing the number of buffers in the shared-memory buffer pool)

Chunks (adding a chunk or changing its status)

Dbspaces (creating or dropping)

Forced residency (on or off, temporarily or for this session)
Mirroring (starting or ending, taking down or restoring a chunk)
Physical log (changing the location or size)

Shared-memory parameters (changing the values)

Changes associated with the logical log files or archive administration are
addressed separately under those topics. Performance tuning is discussed in
Chapter 5, “How to Improve Performance.”

Changing Modes

This section defines the OnLine operating modes, and provides instructions
for moving from one mode to another.

Types of OnLine Modes

OnLine has five modes of operation:

Offline mode
Quiescent mode
Online mode
Shutdown mode
Recovery mode

The last two modes, shutdown and recovery, are transitory and indicate that
OnLine is moving from one mode to another.

IBM Informix OnLine Database Server Administrator's Guide

Types of OnLine Modes

You can determine the current OnLine mode by executing tbstat. The mode
is displayed in the header. The mode also appears in the status line displayed
in DB-Monitor.

Offline Mode

When OnLine is in offline mode, it is not running. OnLine must be offline when
you initiate a data restore.

Quiescent Mode

When OnLine is in quiescent mode, no user can start a database server process.
Only user informix can access the administrative options of DB-Monitor.
Administrative procedures that require a pause in database activity are
performed when OnLine is in quiescent mode. Quiescent mode cannot be
considered a “single-user” mode since any user can gain access to
DB-Monitor or run tbstat. User root can execute command-line utilities while
OnLine is in quiescent mode.

Online Mode

When OnLine is in online mode, access is unrestricted. You can change many
OnLine configuration parameter values while OnLine is online if you use the
command-line utilities instead of DB-Monitor.

Recovery Mode

Recovery mode occurs when OnLine is moving from offline to quiescent mode.
Fast recovery is performed when OnLine is in recovery mode. (Refer to
page 4-39 for further information about fast recovery.)

(Itis possible for a mirrored chunk to be in recovery state, but this is different
than OnLine recovery mode.)

Shutdown Mode

Shutdown mode occurs when OnLine is moving from online to quiescent
mode or from online (or quiescent) to offline mode. Once shutdown mode is
initiated, it cannot be cancelled.

Operating OnLine 3-7

From Offline to Quiescent

3-8

From Offline to Quiescent

When OnLine changes from offline to quiescent mode, the tbinit daemon
process reinitializes shared memory.

When OnLine is in quiescent mode, no user can start a database server
process.

If you are user informix, you can take OnLine from offline to quiescent mode
from within DB-Monitor or from the command line. If you are root, you can
only use the command-line option.

From DB-Monitor
Two options within DB-Monitor take OnLine from offline to quiescent mode.

= Select the Mode menu, Startup option to take OnLine to quiescent
mode with a minimum of keystrokes.

= If you prefer, you can review and change shared-memory param-
eters before you initialize shared memory. To do this, select the
Parameters menu, Shared-Memory option.

From the Command Line

Execute tbinit -s from the command line to take OnLine from offline to
guiescent mode.

To verify that OnLine is running, execute tbstat from the command line. The
header on the tbstat output gives the current operating mode.

For further information about the tbinit utility, refer to page 7-45.

From Offline to Online

When you take OnLine from offline to online mode, OnLine reinitializes
shared memory.

When OnLine is in online mode, it is accessible all OnLine user processes.

If you are user informix or root, you can take OnLine from offline to online
mode from the command line.

IBM Informix OnLine Database Server Administrator's Guide

From Quiescent to Online

Execute tbinit from the command line to take OnLine from offline to online
mode.

To verify that OnLine is running, execute tbstat from the command line. The
header on the tbstat output gives the current operating mode.

For further information about the tbinit utility, refer to page 7-45.

From Quiescent to Online

When you take OnLine from quiescent to online mode, all users gain access.

If you are user informix, you can take OnLine from quiescent to online mode
from within DB-Monitor or from the command line. If you are root, you can
only use the command-line option.

If you took OnLine from online mode to quiescent mode earlier and are now
returning OnLine to online mode, users who were interrupted in earlier
processing must reselect their database and redeclare their cursors.

From DB-Monitor

From within DB-Monitor, select the Mode menu, online option to take
OnLine from quiescent to online mode.

From the Command Line

From the command line, execute tbmode -m from the command line to take
OnLine from quiescent to online mode.

To verify that OnLine is running in online mode, execute tbstat from the
command line. The header on the tbstat output gives the current operating
mode.

For further information about the tbmode utility, refer to page 7-64.

Operating OnLine 3-9

Gracefully from Online to Quiescent

3-10

Gracefully from Online to Quiescent

Take OnLine gracefully from online to quiescent mode when you want to
restrict access to OnLine without interrupting current processing.

If you are user informix, you can take OnLine gracefully from online to
quiescent mode from within DB-Monitor or from the command line. If you
are root, you can only use the command-line option.

After you execute this task, OnLine sets a flag that prevents new database
server processes from gaining access to OnLine. Current server processes are
allowed to finish processing.

Once you initiate the mode change, it cannot be cancelled.

From DB-Monitor

From within DB-Monitor, select the Mode menu, Graceful-Shutdown option
to take OnL.ine gracefully from online to quiescent mode.

DB-Monitor displays a list of all active users and updates it every five seconds
until the last user completes work or until you leave the screen.

From the Command Line

From the command line, execute tbmode -s or tbomode -sy from the
command line to take OnLine gracefully from online to quiescent mode.

A prompt asks for confirmation of the graceful shutdown. The -y option to
tbmode eliminates this prompt.

To verify that OnLine is running in quiescent mode, execute tbstat from the
command line. The header on the tbstat output gives the current operating
mode.

For further information about the tbmode utility, refer to page 7-64.

IBM Informix OnLine Database Server Administrator's Guide

Immediately from Online to Quiescent

Immediately from Online to Quiescent

Take OnLine immediately from online to quiescent mode when you want to
restrict access to OnLine as soon as possible. Work in progress can be lost.

If you are user informix, you can take OnLine immediately from online to
quiescent mode from within DB-Monitor or from the command line. If you
are root, you can only use the command-line option.

A prompt asks for confirmation of the immediate shutdown. If you confirm,
OnLine sends a disconnect signal to all database server processes that are
attached to shared memory. The processes have 10 seconds to comply before
OnLine terminates them.

OnLine users receive either error message, -459 indicating that OnLine was
shut down, or error message, -457 indicating that their database server
process was unexpectedly terminated.

The tbinit daemon process performs proper cleanup on behalf of all database
server processes that were terminated by OnLine. Active transactions are
rolled back.

From DB-Monitor

From within DB-Monitor, select the Mode menu, Immediate-Shutdown
option to take OnLine immediately from online to quiescent mode.

From the Command Line

From the command line, execute tbmode -u or tbmode -uy from the
command line to take OnLine immediately from online to quiescent mode.

A prompt asks for confirmation of the immediate shutdown. The -y option to
tbmode eliminates this prompt.

To verify that OnLine is running in quiescent mode, execute tbstat from the
command line. The header on the tbstat output gives the current operating
mode.

For further information about the tbmode utility, refer to page 7-64.

Operating OnLine 3-11

From Any Mode Immediately to Offline

3-12

From Any Mode Immediately to Offline

This is the proper action to take if you receive a message that the OnLine
daemon is no longer running. After you take OnLine to offline mode, reini-
tialize shared memory by taking OnLine to quiescent or online mode.

If you are user informix, you can take OnLine from any mode to offline
(bypassing quiescent mode) from within DB-Monitor or from the command
line. If you are root, you can only use the command-line options.

A prompt asks for confirmation to go offline. If you confirm, OnLine initiates
a checkpoint request and sends a disconnect signal to all database server
processes that are attached to shared memory. The processes have 10 seconds
to comply before OnLine terminates them.

OnLine users receive either error message, -459 indicating that OnLine was
shut down, or error message, -457 indicating that their database server
process was unexpectedly terminated.

The tbinit daemon process performs proper cleanup on behalf of all database
server processes that were terminated by OnLine. Active transactions are
rolled back.

Taking OnL.ine offline removes the shared-memory segment. OnLine shared
memory must be reinitialized.

From DB-Monitor

From within DB-Monitor, select the Mode menu, Take-Offline option to take
OnLine offline immediately.

From the Command Line

From the command line, execute tbmode -k or tbmode -ky from the
command line to take OnLine offline immediately.

A prompt asks for confirmation of the immediate shutdown. The -y option to
tbmode eliminates this prompt.

For further information about the tbmode utility, refer to page 7-64.

IBM Informix OnLine Database Server Administrator's Guide

Logical Log Administration

Logical Log Administration

This section discusses configuration and backup of logical log files.

For an overview discussion of the function of the logical log, refer to

page 4-18. For background information about the role of the logical log in
OnLine fast recovery, refer to page 4-39. For background information about
what happens when OnLine backs up a logical log file, refer to page 4-26.

This section discusses the following Configuration and Backup topics:

= “Examine Your Logical Log Configuration” on page 3-14

s “Change Pathname of Logical Log Tape Device” on page 3-18
= “Change Block Size of Logical Log Tape Device” on page 3-21
s “Change Tape Size of Logical Log Tape Device” on page 3-22
= “Change Maximum Number of Logical Log Files” on page 3-23
= “Change Size of Logical Log Files” on page 3-24

= “Logical Log File Status” on page 3-26

= “Logical Log File ID Numbers” on page 3-27

= “Add a Logical Log File” on page 3-28

= “Drop a Logical Log File” on page 3-30

= “Move a Logical Log File to Another Dbspace” on page 3-31
= “Change the Logging Status of a Database” on page 3-33

s “Back Up a Logical Log File” on page 3-36

= “Start Continuous Logical Log Backup” on page 3-37

= “End Continuous Logical Log Backup” on page 3-38

= “Switch to the Next Logical Log File” on page 3-39

= “Free a Logical Log File” on page 3-39

= “If the Logical Log Backup Cannot Complete” on page 3-42

Operating OnLine 3-13

Examine Your Logical Log Configuration

3-14

Examine Your Logical Log Configuration

Complete the tasks outlined here to examine your logical log configuration
and to verify that it is appropriate for your OnLine environment.

Your Configuration File

To examine your specified configuration, you need a copy of your OnLine
configuration file, SINFORMIXDIR/etc/$TBCONFIG. Execute tbstat -c while
OnLine is running.

The configuration displayed by DB-Monitor (Status menu, Configuration
option) is a copy of your current OnLine configuration, which could differ
from the values stored in your configuration file.

For further information about the relationship of the current configuration to
the values in the configuration file (SINFORMIXDIR/etc/$STBCONFIG), refer
to page 1-11.

Logical Log File Backups

During OnLine operation, transaction log records are stored on disk in the
logical log files. When the current logical log file becomes full, OnLine
switches to the next one. When OnLine reaches the last defined logical log
file, it repeats the sequence in a never-ending loop. (Refer to page 3-27 for
more information about the rotation of the logical log files.)

It is the operator’s responsibility to back up each logical log file to tape or to
/dev/null as it becomes full. The log file data is crucial in the event of a failure.
The logical log files compose a record of all database activity from the time of
the last archive. If a failure occurs, you can restore all data up to the point of
the failure by first restoring the archive tapes and then rolling forward the
transaction records saved in the logical log file backups. Without the logical
log file backup tapes, you can restore your data only to the point of your
most-recent archive.

IBM Informix OnLine Database Server Administrator's Guide

Examine Your Logical Log Configuration

Freeing the Logical Log Files

The operator should monitor backed-up logical log files to ensure that they
are being freed (released for reuse) in a timely manner. Even a backed-up log
file cannot be freed (its status remains unreleased) if it contains records
belonging to an open transaction. (Refer to page 3-26 for more information
about log file status.)

If OnLine attempts to switch to the next logical log file and finds that the next
log file in sequence is unreleased (status displays as U), OnLine immediately
suspends all processing. Even if other logical log files are free and available,
OnLine cannot skip an unreleased file and write to another, free file.

OnLine must suspend processing when it encounters an unreleased, backed-
up log file to protect the data within the log file. If the log file is backed-up
but not free, a transaction within the log file is still open. If the open trans-
action is eventually rolled back, the data within the log is critically important
for the roll back operation. Refer to page 3-39 for more information about
freeing a logical log file.

Verify the Size and Number of Files
The logical log files contain five types of records:

= SQL data definition statements for all databases
= Record of a checkpoint
= Record of a change to the configuration

= SQL data manipulation statements for databases that were created
with logging

= Record of a change to the logging status of a database

The logical log files receive the first three types of records during processing
even if no databases are created with transaction logging.

Total space allocated to the logical log files is equal to the number of logical
log files multiplied by the size of each log (LOGFILES x LOGSIZE) as specified
in the configuration file.

Operating OnLine 3-15

Examine Your Logical Log Configuration

3-16

If you modify the initial configuration values, you might be able to improve
performance. Weigh these three considerations:

= Size the logical log large enough to prevent a long transaction
condition. (Refer to page 3-39 for a definition of a long transaction.)

= Create enough logical log files so that you can switch log files if
needed without running out of free logical logs.

= Ifyour tape device is slow, ensure that the logical log is small enough
to be backed up in a timely fashion.

Refer to page 2-156 for a detailed discussion of the factors that affect the rate
at which the logical log files fill.

Configuration Parameters

The LTAPEDEV configuration parameter specifies the logical log backup
device. The value you choose for LTAPEDEV has the following implications:

= Ifthelogical log device differs from the archive device, you can plan
your backups without considering the competing needs of the
archive schedule.

= If you specify /dev/null as the logical log backup device, you avoid
having to mount and maintain backup tapes. However, you can only
recover OnLine data up to the point of your most-recent archive tape.
You cannot restore work done since the archive.

= You can specify a logical log backup device attached to another host
system and perform backups across your network.

Look at the copy of your configuration file and compare the values specified
by LTAPEDEV and TAPEDEV. LTAPEDEYV is the logical log tape device.
TAPEDEV is the archive tape device.

Ideally, LTAPEDEV and TAPEDEYV each specify a different device. When this is
the case, you can invoke the Continuous-Backup option to automatically
copy the logical log files to tape as they fill. The archive schedule is irrelevant.

IBM Informix OnLine Database Server Administrator's Guide

Examine Your Logical Log Configuration

If the LTAPEDEV and TAPEDEV values are the same, you must plan your
logical log file backups to leave the maximum amount of free space available
before the archive begins. If the logical log files fill while the archive is under
way, normal OnLine processing stops. If this happens, your options are
limited. You can either abort the archive to free the tape device and back up
the logical logs or leave normal processing suspended until the archive
completes.

You might decide to set LTAPEDEV to /dev/null (and not keep logical log file
backups) under the following conditions:

= If your environment does not include a tape device but you want to
use OnLine, set both LTAPEDEV and TAPEDEV (the archive tape
device) to /dev/null.

= If you do not care about data recovery beyond the information that
is available from archives, set LTAPEDEV to /dev/null. If data
recovery is irrelevant, set both LTAPEDEV and TAPEDEYV to /dev/null.

When LTAPEDEYV is set to /dev/null, OnLine does not wait for a backup before
marking the logical log files as backed up. Instead, as soon as a logical log file
becomes full, it is immediately marked as backed up (status B).

When the last open transaction in the log is closed, the log file is marked free
(status F). As a result, no logical log data is stored. This means that, in the
event of failure, you cannot restore work done since the most-recent archive.

LTAPEBLK and LTAPESIZE

Verify that the current block size and tape size are appropriate for the device
specified. The block size of the logical log tape device is specified as
LTAPEBLK. The tape size is specified as LTAPESIZE.

If LTAPEDEV is specified as /dev/null, block size and tape size are ignored.

Specify LTAPEBLK as the largest block size permitted by your tape device.
Specify LTAPESIZE as the maximum amount of data you can write to this
tape.

Operating OnLine 3-17

Change Pathname of Logical Log Tape Device

3-18

Location of Logical Log Files

When OnLine disk space is initialized, the logical log files are located in the
root dbspace. You cannot control this.

After OnLine is initialized, you can improve performance by moving the
logical log files out of the root dbspace and onto one or more disks that are
not shared by active tables. This can reduce disk contention.

If you do not know where your logical log files currently reside, select the
Status menu, Logs option.

If you decide to move the logical log files, refer to page 3-31.

Change Pathname of Logical Log Tape Device
The logical log tape device is specified as LTAPEDEV in the configuration file.

You can change the value of LTAPEDEV while OnLine is in online mode. The
change takes effect immediately.

Be prepared to create a level-0 archive immediately after you make the
change, unless you change the value to /dev/null.

You can establish the value of LTAPEDEYV as a symbolic link, enabling you to
switch between more than one tape device without changing the pathname.

Important: Any time you change the physical characteristics of the tape device, you
must create a level-0 archive. Otherwise, you might be unable to restore the complete
set of tapes. OnLine cannot switch tape devices during a restore. OnLine will expect
all logical log backup tapes to have the same block size and tape size as were specified
at the time of the most recent level-0 archive.

If you change the pathname to /dev/null, the change proceeds more
smoothly if you make the change while OnLine is offline. If LTAPEDEV is set
to /dev/null, you can restore OnLine data only up to the point of your most-
recent archive. You cannot restore work done since then.

The tape device specified by the pathname must perform a rewind before
opening and on closing.

IBM Informix OnLine Database Server Administrator's Guide

Change Pathname of Logical Log Tape Device

If you are logged in as user informix, you can change the value of LTAPEDEV
from within DB-Monitor or from the command line. If you are logged in as
root, you must use the command-line option.

Preliminary Consideration

Tape devices must rewind before opening and on closing to be compatible
with OnLine operation. The reason for this is a series of checks that OnLine
performs before writing to a tape.

Whenever OnLine attempts to write to any tape other than the first tape in a
multivolume backup or archive, OnLine first reads the tape header to make
sure that the tape is available for use. Then the device is closed and reopened.
OnLine assumes the tape was rewound on closing and begins to write.

Whenever OnLine attempts to read a tape, it first reads the header and looks
for the correct information. OnLine does not find the correct header infor-
mation at the start of the tape if the tape device did not rewind on closing
during the write process.

Create a level-0 archive immediately after you change the value of LTAPEDEV
to ensure a proper restore. This is done for two reasons.

First, the OnLine restore procedure cannot switch tape devices as it attempts
to read the logical log backup tapes. If the physical characteristics of the log
file tapes change during the restore, either because of a new block size or tape
size, the restore fails.

Second, the restore fails if the tape device specified as LTAPEDEV at the time
of the level-0 archive is unavailable when the restore begins.

Important: At the beginning of a restore, the OnLine configuration, including
logical log devices, must reflect the configuration as it was when the level-0 archive
was created.

To specify a logical log backup tape device on another host machine, use the
following syntax:

host _machi ne_nane: t ape_devi ce_pat hnane:

The following example specifies a logical log backup tape device on the host
machine kyoto:

kyot o: / dev/ rnt 01

Operating OnLine 3-19

Change Pathname of Logical Log Tape Device

3-20

The host machine where the tape device is attached must permit user
informix to run a UNIX shell from your machine without requiring a
password. If your machine does not appear in the hosts.equiv file of the
other host machine, then it must appear in the .rhosts file in the home
directory of the informix login. If you are backing up logical log files as root,
the machine name must appear in the .rhosts file for root on the other host
machine.

Verify that the block size and the tape size are correct for the new device.
Block size for the logical log tape device is specified as LTAPEBLK. Tape size
is specified as LTAPESIZE. If you need to change these values, you can do so
at the same time that you change the value of LTAPEDEV.

Specify LTAPEBLK as the largest block size permitted by your tape device.
Specify LTAPESIZE as the maximum amount of data that should be written to
this tape.

If you are changing the value of LTAPEDEV from a pathname to /dev/null,
take OnL.ine offline before you execute this change. If you make the change
while OnLine is in either quiescent or online mode, you can create a situation
in which one or more log files are backed up, but never freed. This can
interrupt processing because OnLine stops if it finds that the next logical log
file (in sequence) is not free.

As soon as you make the change, you are only able to restore your system up
to the point of your most recent archive and any previously backed-up
logical logs. You cannot restore work done since then.

From DB-Monitor

1. From within DB-Monitor, select the Logical-Logs menu, Tape-Param-
eters option to change the value of LTAPEDEV. DB-Monitor displays
the current value.

2. Enter the new full pathname value for the logical log tape device in
the Log Tape Devi ce field.

3. Enter new values in the device Bl ock Si ze and Tape Si ze fields, if
appropriate.

IBM Informix OnLine Database Server Administrator's Guide

Change Block Size of Logical Log Tape Device

From the Command Line

To change the value of LTAPEDEV from the command line, use an editor to
edit the file specified by $SINFORMIXDIR/etc/$TBCONFIG. Change the value
of LTAPEDEV (and LTAPEBLK and LTAPESIZE, if appropriate).

Change Block Size of Logical Log Tape Device

The block size of the logical log tape device is specified as LTAPEBLK in the
configuration file. The block size is expressed in kilobytes.

You can change the value of LTAPEBLK while OnLine is in online mode. The
change takes effect immediately.

Specify the largest block size permitted by your tape device.
If the tape device pathname is /dev/null, the block size is ignored.

If you are logged in as user informix, you can change the value of LTAPEBLK
from within DB-Monitor or from the command line. If you are logged in as
root, you must use the command-line option.

Important: Any time you change the physical characteristics of the tape device, you
must create a level-0 archive. Otherwise, you might be unable to restore the complete
set of tapes. OnLine cannot switch tape devices during a restore. OnLine expects all
logical log backup tapes to have the same block size and tape size as were specified at
the time of the most recent level-0 archive.

OnLine does not check the tape device when you specify the block size.
Verify that the tape device specified in LTAPEDEV can read the block size that
you specified. If not, you cannot restore the tape.

From DB-Monitor

1. Select the Logical-Logs menu, Tape-Parameters option to change the
value of LTAPEBLK. DB-Monitor displays the current value.

2. Enter the new block size expressed in kilobytes in the Bl ock Si ze
field that appears under the Log Tape Devi ce field.

Operating OnLine 3-21

Change Tape Size of Logical Log Tape Device

3-22

From the Command Line

1. Use an editor to edit the file specified by
SINFORMIXDIR/etc/$TBCONFIG.

2. Change the value of LTAPEBLK to the new block size, expressed in
kilobytes.

Change Tape Size of Logical Log Tape Device

The tape size of the logical log tape device is specified as LTAPESIZE in the
configuration file. Tape size refers to the maximum amount of data that
should be written to this tape, expressed in kilobytes.

You can change the value of LTAPESIZE while OnLine is in online mode. The
change takes effect immediately.

If the tape device pathname is /dev/null, the tape size is ignored.

If you are logged in as user informix, you can make this change from within
DB-Monitor or from the command line. If you are logged in as root, you must
use the command-line option.

Important: Any time you change the physical characteristics of the tape device, you
must create a level-0 archive. Otherwise, you might be unable to restore the complete
set of tapes. OnLine cannot switch tape devices during a restore. OnLine will expect
all logical log backup tapes to have the same block size and tape size as were specified
at the time of the most recent level-0 archive.

From DB-Monitor
1. Select the Logical-Logs menu, Tape-Parameters option to change the
value of LTAPESIZE. DB-Monitor displays the current value.

2. Enter the new tape size expressed in kilobytes in the Tape Si ze field
that appears under the Log Tape Devi ce field.

IBM Informix OnLine Database Server Administrator's Guide

Change Maximum Number of Logical Log Files

From the Command Line

1. Tochange the value of LTAPESIZE, use an editor to edit the file
specified by $INFORMIXDIR/etc/$TBCONFIG.

2. Change the value of LTAPESIZE to the new tape size, expressed in
kilobytes.

Change Maximum Number of Logical Log Files

The maximum number of logical log files is specified as LOGSMAX in the
configuration file.

Do not confuse the maximum number of logical log files with the actual
number of log files. You specify the actual number of log files during the
initial configuration as LOGFILES. Thereafter, OnLine tracks the number and
adjusts the value of LOGFILES as you add or drop log files.

To obtain the current value of LOGSMAX, examine your copy of the config-
uration file or select the Parameter menu, Shared-Memory option and look at
the value in the field:

Max # of Logical Logs.

To obtain the actual number of log files in your current configuration, either
execute thstat -1 or select the Status menu, Logs option.

You can change the maximum number of logical log files while OnLine is in
online mode, but it will not take effect until you reinitialize shared memory
(take OnLine offline and then bring it to quiescent mode).

If you are logged in as user informix, you can change the value of LOGSMAX
from within DB-Monitor or from the command line. If you are logged in as
root, you must use the command-line option.

Operating OnLine 3-23

Change Size of Logical Log Files

3-24

From DB-Monitor

1. From within DB-Monitor, select the Parameters menu, Shared-
Memory option to change the value of LOGSMAX. DB-Monitor
displays the current value.

2. Enter the new value for LOGSMAX in the Max # of Logi cal Logs
field.

3. Reinitialize shared memory (take OnLine offline and then to
guiescent mode) for the change to take effect.

From the Command Line

1. Tochange the value of LOGSMAX from the command line, use an
editor to edit the file specified by $INFORMIXDIR/etc/$TBCONFIG.

2. Change the value of LOGSMAX.

3. Reinitialize shared memory (take OnLine offline and then to
guiescent mode) for the change to take effect.

Change Size of Logical Log Files

The size of the logical log files is specified as LOGSIZE in the configuration
file. Log size is expressed in Kilobytes. To change the size of the logical log files,
you must reinitialize disk space, which will destroy all existing data in the process.

Consider the size of the logical log files to be fixed when you initialize OnLine
disk space. You cannot change the size of the log files unless you reinitialize
OnLine disk space. To do so destroys all existing data.

If you intend to change the logical log file size, you must unload all OnLine
data, reinitialize disk space, re-create all databases and tables, and reload all
data.

You cannot use the OnLine restore option, since a restore would return
LOGSIZE to its previous value.

If you are logged in as user informix, you can make this change from within
DB-Monitor or from the command line. If you are logged in as root, you must
use the command-line option.

IBM Informix OnLine Database Server Administrator's Guide

Change Size of Logical Log Files

From DB-Monitor

1.

From within DB-Monitor, first unload all OnLine data. Refer to
page 4-53.

Select the Parameters menu, Initialize option to reinitialize disk
space. Change the value in the field labelled Log. Log Si ze. Proceed
with OnLine disk space initialization. For more information about
the disk space initialization procedure, refer to page 1-52.

After OnLine disk space is initialized, re-create all databases and
tables. Then reload all OnLine data.

From the Command Line

1.

To change the value of LOGSIZE from the command line, use an
editor to edit the file specified by $INFORMIXDIR/etc/$TBCONFIG.

Unload all OnLine data. Refer to page 4-53.

Execute tbinit -i from the command line to reinitialize disk space.
When you execute this option, you destroy all existing data.

After OnLine is configured and initialized, re-create all databases
and tables. Then reload all OnLine data.

Operating OnLine 3-25

Logical Log File Status

3-26

Logical Log File Status

You can display the status of the logical logs through the Status menu, Logs
option, or by executing tbstat -1 (lowercase L).

The status portion of the logical log display contains two columns, Number
and Flags. The numbers are the ID numbers of the individual logical log files.
(Refer to page 3-27 for more information about the ID numbers.) The flags are
the logical log status flags. An example of the status portion of a display
follows:

Number Flags

1 U---C-L
2 (S

3 U-B----
4 A N—

The flag display contains seven positions. Flags appear in the first, third, fifth,
and seventh positions.

In position 1, any one of three possible flags appears: A, F, or U. In position 3,
the B flag might or might not appear; in position 5, the Cflag might or might
not appear; and in position 7, the L flag might or might not appear.

Position Flag Description
1 A The logical log file is newly added. It does not become
available until after you create a level-0 archive.
F The logical log file is free and available for use.
U The logical log file is unreleased. In general, a logical log

file is freed after it is backed up and all transactions within
the log file are closed.

(Lof2)

IBM Informix OnLine Database Server Administrator's Guide

Logical Log File ID Numbers

Position Flag Description

3 B The logical log file is backed up.

5 C The logical log file is the current log.

7 L The logical log file contains the most recent checkpoint

record in the logical log (all log files). You cannot free this
file until a new checkpoint record is written to the logical
log. (Refer to page 3-39.)

(2 of 2)

Logical Log File ID Numbers

OnLine tracks the logical log files by assigning each free log file a unique
number. The sequence begins with 1, which is the first log file filled after
OnLine disk space is initialized. The ID number for each subsequent log file
is incremented by 1.

For example, if you configured your environment for six log files, these files
would be identified as 1 through 6 after OnLine disk space is initialized.

OnLine rotates through the logical log files during processing. Each set of
records in the logical log file is uniquely identified by incrementing the ID
number each time a log file fills, as displayed in the example below.

Figure 3-1
Relationship between
logical log files and their ID numbers

Logical 1st rotation 2nd rotation 3rd rotation 4th rotation
log file ID number ID number ID number ID number
1 1 7 13 19
2 2 8 14 20
3 3 9 15 21
(1of2)

Operating OnLine ~ 3-27

Add a Logical Log File

3-28

Logical 1st rotation 2nd rotation 3rd rotation 4th rotation
log file ID number ID number ID number ID number
4 4 10 16 22
5 5 11 17 23
6 6 12 18 24
(20f2)

In general, log files become free after the file has been backed up to tape and
all logical log records within the file are associated with closed transactions.
(Refer to page 3-39.) It is possible for one logical log file to become free earlier
than another logical log file with a lower ID number. For example, nothing
prevents logical log number 10 from becoming free (status F) while the status
of logical log number 8 remains unreleased (status U).

However, OnLine cannot skip a logical log file that is unreleased to make use
of the space available in the free logical log file. That is, although the logical
log files do not necessarily become free in sequence, OnLine is required to fill
the logical log files in sequence. If OnLine fills the current logical log file and
the next logical log file in sequence is unreleased (status U), OnLine
processing is suspended until the log file is freed. It makes no difference that
other logical log files are free.

Add a Logical Log File

Add a log file to increase the total amount of disk space allocated to the
OnLine logical log.

You cannot add a log during an archive (quiescent or online).

The newly added log or logs do not become available until you create a
level-0 archive.

Verify that you will not exceed the maximum number of logical logs allowed
in your configuration, specified as LOGSMAX.

If you are logged in as user informix, you can make this change from within
DB-Monitor or from the command line. If you are logged in as root, you must
use the command-line option.

OnLine must be in quiescent mode. You add log files one at a time.

IBM Informix OnLine Database Server Administrator's Guide

Add a Logical Log File

From DB-Monitor

1.

From within DB-Monitor, select the Parameters menu, Add-Log
option to add a logical log file.

Enter the name of the dbspace where the new logical log file will
reside in the field labelled Dbspace Nane. Because you cannot
change the size of the logical log file unless you reinitialize OnLine
disk space, the size of the log file automatically appears in the

Logi cal Log Size field.

To verify that the new log file has been added, select the Status menu,
Logs option. The status of the new log file is A.

The newly added log file becomes available after you create a level-0 archive.

From the Command Line

1.

From the command line, execute the tbparams utility with the -aand
-d options to add a logical log file.

The -a option indicates that you are adding a log file. When the -a
option is followed by -d, the -d introduces the name of the dbspace
where the logical log file will reside, as shown in the following
example:

tbparanms -a -d dbspace_1

To verify that the new log has been added, execute tbstat -1. The status of the
new log file is A.

The newly added log file becomes available after you create a level-0 archive.

Operating OnLine 3-29

Drop a Logical Log File

3-30

1.

Drop a Logical Log File

You can drop a log to increase the amount of the disk space available within
a dbspace. If you are logged in as user informix, you can drop a logical log

file from within DB-Monitor or from the command line. If you are logged in
as root, you must use the command-line option.

When dropping a log file, consider the following requirements:

OnLine requires a minimum of three logical log files at all times. You
cannot drop a log if your logical log is composed of only three log
files.

You drop log files one at a time. After your configuration reflects the
desired number of logical log files, create a level-0 archive.

OnLine must be in quiescent mode.

You can only drop a log file that has a status of Free (F) or newly
Added (A).

You must know the ID number of each logical log that you intend to
drop.

To obtain the status and ID number of a logical log file, select the
Status menu, Logs option or execute tbstat -1 (lowercase L) from the
command line while OnLine is running.

After you drop one or more logical logs, the level-0 archive is an extra
precaution. The archive ensures that the configuration of the logical
logs is registered with OnLine. This prevents OnLine from
attempting to use the dropped logs during a restore.

From DB-Monitor

From within DB-Monitor, select the Parameters menu, Drop-Log
option to drop a logical log file. Use the arrow keys to select the log
you want to drop and press CTRL-B or F3. You are asked to confirm
your choice.

Create a level-0 archive after your configuration reflects the desired
number of logical log files.

IBM Informix OnLine Database Server Administrator's Guide

Move a Logical Log File to Another Dbspace

From the Command Line

1. Fromthe command line, execute the tbparams utility with the -d and
-1 (lowercase L) option to drop a logical log file.

The -d option indicates you are dropping a log file. When the -d
option is followed by the -l option, the -l introduces the ID number
of the logical log file you are dropping. The following example drops
the logical log file with ID number 121:

tbparams -d -1 121

2. Create a level-0 archive after your configuration reflects the desired
number of logical log files.

Move a Logical Log File to Another Dbspace

Changing the location of the logical log files is actually a combination of two
simpler actions:

= Dropping the logical log files from their current dbspace
= Adding the logical log files to their new dbspace

Although moving the logical logs is easy to do, it can be time-consuming
because you must create two, separate level-0 archives as part of the
procedure.

You can improve performance by moving the logical log files out of the root
dbspace. When OnLine disk space is initialized, the logical log files and the
physical log are placed in the root dbspace. To reduce the number of writes
to the root dbspace and minimize contention, move the logical log files to a
dbspace on a disk that is not shared by active tables or the physical log.

Important: You must be logged in as user informix or root to add or drop a logical
log, and OnLine must be in quiescent mode.

The logical log files contain critical information and should be mirrored for
maximum data protection. If the dbspace to which you are moving the log
files is not already mirrored, plan to add mirroring to the dbspace.

Operating OnLine 3-31

Move a Logical Log File to Another Dbspace

3-32

1.

10.

The following example illustrates moving six logical log files from the root
dbspace to another dbspace, dbspace_1. For more information about
completing a specific step, turn to the page indicated.

Free all log files except the current log file. A log file is free if it has
been backed up and all records with the log file are part of closed
transactions. (Refer to page 3-39.)

Verify that the value of MAXLOGS is greater than or equal to the
number of log files after the move, plus 3. In this example, the value
of MAXLOGS must be greater than or equal to 9. Change the value of
MAXLOGS, if necessary. (Refer to page 3-23.)

Drop all but three of the logical log files. You cannot drop the current
log file. If you only have three logical log files in the root dbspace,
skip this step. (Refer to page 3-30.)

Add the new logs to the dbspace. In this example, add six new logs
to dbspace_1. (Refer to page 3-28.)

Create a level-0 archive to make the new logs available to OnLine.
(Refer to page 3-57.)

Switch the logical logs to start a new current log file. (Refer to
page 3-39.)

Back up the former “current log file” to free it. (Refer to page 3-36.)

Drop the three log files that remain in the root dbspace. (Refer to
page 3-30.)

Mirror the dbspace where the new log files reside, if it is not already
mirrored. (Refer to page 3-105.)

Create a level-0 archive to make the new logs available and to
complete the mirroring procedure. (Refer to page 3-57.)

IBM Informix OnLine Database Server Administrator's Guide

Change the Logging Status of a Database

Change the Logging Status of a Database
You can make any one of the following changes to a database:

= Add logging (buffered or unbuffered) to a database
= End logging for a database

= Change logging from buffered to unbuffered

= Change logging from unbuffered to buffered

= Make a database ANSI-compliant

Add logging to a database to take advantage of transaction logging or other
OnLine features that require logging, such as deferred checking.

End logging to reduce the amount of OnL.ine processing: for example, if you
are loading many rows into a single database from a recoverable source, such
as tape or an ASCII file. (However, if other users are active, you lose the
records of their transactions until you reinitiate logging.)

If you are operating in an IBM Informix STAR environment, you might need
to change the logging status from buffered to unbuffered, or vice versa, to
permit a multidatabase query. (Refer to the SET LOG statement in

IBM Informix Guide to SQL: Reference.)

You can only make a database ANSI-compliant from within DB-Monitor;
therefore, you must be logged in as user informix. All other logging status
changes can be performed by either user informix or root.

If you use DB-Monitor to make any of these changes, you must take OnLine
to quiescent mode. If you use the command-line utilities, you can make the
changes while OnLine is in online mode.

You must create a level-0 archive before you add logging to a database. How
you create the archive (in online or quiescent mode) has implications for
database management. Read the following paragraphs to help you decide
which approach to use.

Operating OnLine 3-33

Change the Logging Status of a Database

3-34

Adding Logging to a Database

Unbuffered logging is the best choice for most databases. In the event of a
failure, only the single alteration in progress at the time of the failure is lost.
If you use buffered logging and a failure occurs, you could lose more than
just the current transaction. In return for this risk, performance during alter-
ations is slightly improved.

Buffered logging is best for databases that are updated frequently (so that
speed of updating is important) as long as you can re-create the updates from
other data in the event of failure.

If you are working in a single-tape-drive environment without an easy way
to ensure that logical log files do not fill during an archive, you might need
to create your level-0 archive in quiescent mode.

If this is the case, you must create the level-0 archive from within DB-Monitor.
If you use the command-line option to create an archive, the flag indicating
that you created the necessary archive is reset as soon as you enter
DB-Monitor to change the logging status. DB-Monitor requires you to redo the
archive.

From DB-Monitor
Follow these steps to add logging to a database:

1. Take OnLine to quiescent mode. (Refer to page 3-10.)
2. Create a level-0 archive from DB-Monitor. (Refer to page 3-57.)

3. Select the Logical-Logs menu, Databases option. Specify the
database and add logging, following the screen directions. (This is
described in the following paragraphs.)

From the Command Line

If you can create an online archive and wish to do so from the command line,
you can save yourself a step and request the change in logging status as part
of the same command. However, the drawback is that the database remains
locked for the duration of the level-0 archive. Users cannot access it.

IBM Informix OnLine Database Server Administrator's Guide

Change the Logging Status of a Database

Add logging to a database by executing one of these two commands:

tbtape -s -B database (buffered | ogging)
t bt ape -s -U dat abase (unbuffered | oggi ng)

You can change logging status for any number of databases with the same
command. For further information about the tbtape utility, refer to
page 7-102.

If you can create an online archive and you do so from DB-Monitor, users are
able to access all databases during the archive. After the archive completes,
change the database status before you exit DB-Monitor. If you exit, the flag
indicating that you created the necessary archive is reset. DB-Monitor will
require you to redo the archive when you reenter.

To add logging to a database
1. Create an online, level-0 archive from DB-Monitor. (Refer to
page 3-57.)
2. Select the Logical-Logs menu, Databases option.

3. Use the Arrow keys to select the database to which you want to add
logging. Press CTRL-B or F3.

4. When the logging options screen appears, DB-Monitor displays the
current log status of the database. Use the arrow keys to select the
kind of logging you want. Press CTRL-B or F3.

Ending or Modifying Logging from DB-Monitor

1. Toend logging for a database from within DB-Monitor, select the
Logical-Logs menu, Databases option.

2. Use the arrow keys to select the database to which you want to add
logging. Press CTRL-B or F3.

When the logging options screen appears, DB-Monitor displays the current
log status of the database. Use the arrow keys to select the kind of logging
you want, including no logging. Press CTRL-B or F3.

To end logging for a database from the command line, execute the following
command:

t bt ape - N dat abase (no 1 oggi ng)

Operating OnLine 3-35

Back Up a Logical Log File

3-36

You can change the logging status for any number of databases with the same
command.

To change buffered logging to unbuffered logging, or vice versa, execute one
of the following commands:

t bt ape - B dat abase (buf fered | oggi ng)
t bt ape - U dat abase (unbuffered | oggi ng)

You can change the logging status for any number of databases with the same
command. For further information about the tbtape utility, refer to
page 7-102.

ANSI Compliance

You must use DB-Monitor to make a database ANSI-compliant. Select the
Logical-Logs menu, Databases option.

Use the Arrow keys to select the database to which you want to add logging.
Press CTRL-B or F3.

When the logging options screen appears, DB-Monitor displays the current
log status of the database. Use the Arrow keys to select Unbuf f er ed
Loggi ng, Mode ANSI. Press CTRL-B or F3.

Back Up a Logical Log File

OnLine automatically switches to a new logical log file when the current log
file fills. The full logical log file displays an unreleased status, U. After you
back it up, the status changes to U- B. (The logical log file is not free until all
the transactions within the log file are closed.)

You should attempt to back up each logical log file as soon as it fills. (If you
are running OnLine with the Continuous-Backup option, OnLine performs
backups automatically. Refer to page 3-37.)

When you explicitly request a backup, OnLine backs up all full logical log
files. It also prompts you with an option to switch the log files and back up
the formerly “current” log.

If you press the Interrupt key while a backup is under way, OnLine finishes
the backup and then returns control to you. Any other full log files are left
with unreleased status, U.

IBM Informix OnLine Database Server Administrator's Guide

Start Continuous Logical Log Backup

If you are logged in as user informix, you can back up a log file from within
DB-Monitor or from the command line. If you are logged in as root, you must
use the command-line option.

You can back up a log file while OnLine is in online mode.

From DB-Monitor

From within DB-Monitor, select the Logical-Logs menu, Auto-Backup option
to explicitly request the backup of all full logical log files.

When you do so, DB-Monitor executes the tbtape process and an interactive
dialogue is begun on the DB-Monitor screen. You are prompted to mount a
tape on the logical log backup tape device. You are also prompted if an
additional tape is needed.

From the Command Line

Execute tbtape -a from the command line to explicitly request the backup of
all full logical log files

Do not back up a logical log file from the command line in background mode
(that is, using the UNIX & operator on the command line). The tbtape process
initiates an interactive dialogue, prompting for new tapes if necessary. It is
easy to miss the prompts and delay the backup process if it is executed in
background mode.

For further information about the tbtape utility, refer to page 7-102.

Start Continuous Logical Log Backup

When the Continuous-Backup option is on, OnLine automatically backs up
each logical log file as it becomes full. When this option is on, you are
protected against ever losing more than a partial log file, even in the worst-
case media failure (the chunk that contains your logical log fails).

Continuous logging requires a dedicated terminal or window. The terminal
user must remain within DB-Monitor while Continuous-Backup is running.

You must mount a write-enabled tape in the logical log tape device while
Continuous-Backup is running.

Operating OnLine 3-37

End Continuous Logical Log Backup

3-38

When you initiate Continuous-Backup, OnLine backs up any full logical log
files immediately. Continuous-Backup does not back up the current log
(status C).

If you press the Interrupt key while a backup is under way, OnL.ine finishes
the backup and then returns control to you. If OnLine is waiting for a log file
to fill, the option is ended immediately.

If you are logged in as user informix, you can start the Continuous-Backup
option from within DB-Monitor or from the command line. If you are logged
in as root, you must use the command-line option.

You can start continuous logging in online mode.

From DB-Monitor

From within DB-Monitor, select the Logical-Logs menu, Continuous-Backup
option to start continuous logging.

When you do so, DB-Monitor executes the tbtape process and an interactive
dialogue is begun on the DB-Monitor screen. You are prompted to mount a
tape on the logical log backup tape device. You are also prompted if an
additional tape is needed.

From the Command Line
Execute tbtape -c from the command line to start continuous logging.

Do not start continuous logging from the command line in background mode
(that is, using the UNIX & operator on the command line). The tbtape process
initiates an interactive dialogue, prompting for new tapes if necessary. It is
easy to miss the prompts and delay the backup process if it is executed in
background mode.

For further information about the tbtape utility, refer to page 7-102.

End Continuous Logical Log Backup

To end the Continuous-Backup option, press the Interrupt key at the terminal
that is dedicated to the backup.

IBM Informix OnLine Database Server Administrator's Guide

Switch to the Next Logical Log File

You must explicitly request logical log backups (using the DB-Monitor Auto-
Backup option or its command-line equivalent, tbtape -a) until you restart
continuous logging.

If you press the Interrupt key while a backup is underway, OnLine finishes
the backup and then returns control to you.

If you press the Interrupt key while OnLine is waiting for a log file to fill, the
option is ended immediately.

Switch to the Next Logical Log File

There are two reasons why you might want to switch to the next logical log
file before the current file becomes full:

= You must switch to the next logical log file after you create a
blobspace if you intend to insert blobs in the blobspace right away.
The statement that creates a blobspace and the statements that insert
blobs into that blobspace must appear in separate logical log files.
This requirement is independent of the logging status of the
database.

= You also must switch to the next logical log file if you want to back
up the log file with the status of Cor current.

You must be logged in as user informix or root to switch to the next available
log file. You can make this change while OnLine is in online mode.

Execute tbmode -1 (lowercase L) from the command line to switch to the next
available log file. You cannot do this from within DB-Monitor.

Free a Logical Log File

A logical log file is considered to be free (status F) when the log file is backed
up and all transactions within the log are closed. Three conditions must exist
before you can free a logical log file:

= The log file is backed up to tape.

= Allrecords within the log file are associated with closed transactions.

= The log file does not contain the most recent checkpoint record.

Operating OnLine 3-39

Free a Logical Log File

3-40

Refer to page 3-15 for a discussion about the importance of freeing the logical
log files in a timely manner. Refer to page 3-26 for information about the
logical log file status flags. Refer to page 3-27 for more information about
how the logical log files rotate through ID numbers.

OnLine user processes attempt to free logical log files under the following
conditions:

= The first OnLine user process that writes to a new logical log file
attempts to free the previous log.

= Each time tbtape completes its backup of a logical log file, it attempts
to free the log file.

= Each time an OnLine database server process commits or rolls back
atransaction, it attempts to free the logical log file in which the trans-
action began.

= Eachtime an OnLine user process attempts to use the next logical log
file, it attempts to free the log file, if it is not already free.

Long Transactions

A long transaction is an open transaction that starts in the first logical log file
(the one with the lowest ID number at any time). Since a logical log file cannot
be freed until all records within the file are associated with closed transac-
tions, the long transaction prevents the first logical log file from becoming
free and available for reuse. The logged data must be kept intact (not
overwritten) in case the open transaction must be rolled back.

If a long transaction were permitted to continue, it could pose a threat to your
OnLine processing. If OnLine attempted to fill the next logical log file in
sequence but found that it was unreleased (status U) and not freed, OnLine
processing would be suspended to protect the data in the logical log file.

Long transactions are handled automatically by OnLine. For further infor-

mation about how OnLine handles long transactions internally, refer to the
discussion of the LTXHWM and LTXEHWM configuration file parameters on
page 2-159.

IBM Informix OnLine Database Server Administrator's Guide

Free a Logical Log File

Status A

If a log file is newly added (status A), create a level-0 archive to activate the
log file and make it available for use.

Status U

If a log file contains records but is not yet backed up (status U), execute
tbmode -a to back up the log from the command line, or (if you are logged in
as user informix) select the Logical-Logs menu, Auto-Backup option. (Refer
to page 3-36.) If backing up the log file does not free it, its status is either U- B
or U- B- L. Refer to the following subsections.

Status U-B

If alog file is backed up but unreleased (status U- B), some transactions in the
log file are still underway. If you do not want to wait until the transactions
complete, take OnLine to quiescent mode (Immediate Shutdown). Any active
transactions are rolled back.

Status U-C

If you want to free the current log file (status C), execute tbmode -1 from the
command line to switch to the next available log file. Now back up the log
file. If the log file is still not free, its status is U- B.

If you are logged in as user informix, a second option is to request the Auto-
Backup option from the DB-Monitor Logical-Logs menu. After all full logs are
backed up, you are prompted to switch to the next available logical log file
and back up the former current log file. The log file status thus changes from
U- Cto U- B. (It is possible, if all transactions in the former current log file are
closed, that this action would change the status from U- Cto F)

Status U-B-L

A special case exists in which a log file is not freed even though the log file is
backed up to tape and all transactions within are closed. This special case is
indicated by log status L, which means that this logical log file contains the

most recent checkpoint record in the logical log on disk.

Operating OnLine 3-41

If the Logical Log Backup Cannot Complete

3-42

OnLine cannot free this log. To do so would permit new records to overwrite
the most recent record in the logical log that designates a time when both
physical and logical consistency was ensured. If this happened, OnLine
would be unable to execute fast recovery. (Refer to page 4-39.)

Therefore, this log file maintains a backed-up status until a new checkpoint
record is written to the current logical log file. If you are logged in as user
informix, you can force a checkpoint by requesting the DB-Monitor Force-
Ckpt option. You can also force a checkpoint from the command line by
executing tbmode -c. (Refer to page 7-67.)

If the Logical Log Backup Cannot Complete

If a failure occurs while OnLine is backing up a logical log file, it handles the
situation in the following manner.

During a restore, you can roll forward any log files that were already backed
up to tape before the failure. The partial log remains on the tape as well. The
logical log file on disk that was in the process of being backed up at the time
of the failure is not marked as backed up.

If a logical log backup fails, the next logical log backup session begins with
the logical log file that was being backed up when the failure occurred.

Even if the failure was so severe as to require an immediate restore, the
restore procedure provides you with the opportunity to back up to tape any
logical log files on disk that are not marked as backed up.

Here is an example. A logical log file is being backed up and a failure occurs.
The backup is interrupted. A restore is needed. How does the restore handle
the partial backup on tape?

Call this tape, which contains both valid backed-up log files and a partial log,
Tape A.

When the restore procedure begins, OnLine reads the appropriate archive
tapes. After reading and restoring the archive tapes, OnLine prompts for the
first logical log file since the last archive. Assume that log file is the first log
file on Tape A. The operator mounts Tape A.

OnLine reads each logical log file in sequence. When OnLine reaches the end
of the first log file, it rolls forward all the operations described by the records
contained in that file.

IBM Informix OnLine Database Server Administrator's Guide

Archive Administration

This process continues with each log file on Tape A. When the restore process
encounters the partial log at the end of Tape A, it reads what records it can.
Because OnLine has not reached the end of the log file, it prompts the
operator for the next tape.

The operator mounts Tape B. OnLine reads the logical log header indicating
that this is the beginning of the same log file that has been partially read. At
this point, the restore procedure ignores the partial log information read at

the end of Tape A and begins to read the complete log as it exists on Tape B.

If, in response to the prompt for the next tape, the operator indicates that no
more tapes exist, the restore process begins to roll forward whatever records
it can from the partial log on Tape A. All records that are part of incomplete
transactions are rolled back.

Archive Administration

For an explanation of what happens during an archive and how OnLine
determines which disk pages to copy to tape, refer to page 4-30.

For information about the role of an archive in an OnLine data restore, refer
to page 4-45.

Archive Types

An archive is a copy of OnLine data at a specific time, stored on one or more
volumes of tape. OnLine supports three-tiered incremental archives:

= Level-0, the base-line archive

s Level-1, all changes since the last level-0 archive

= Level-2, all changes since the last level-1 or level-2 archive
You can create archives (any level) when OnLine is in online mode or
guiescent mode. You can also create an archive remotely: that is, when the

tape device is managed by a different machine. Each of these archives is
explained in the following paragraphs.

Operating OnLine 3-43

Archive Types

An online archive is an archive that is created while OnLine is online and
database server processes are modifying data. Allocation of some disk pages
in dbspaces and blobspaces might be temporarily frozen during an online
archive. (Refer to page 4-30 for an explanation of how OnLine manages an
online archive.)

A quiescent archive is an archive that is created while OnLine is in quiescent
mode. No database activity occurs while the archive is being made.

A remote archive is an archive that is created on a tape device managed by
another host machine. You can create a remote archive in either online or
quiescent mode. (Refer to page 3-53 for instructions on how to specify an
archive device on another machine.)

Level-0 Archive

A level-0 archive is the baseline archive. It contains a copy of every used disk
page (dbspace and blobspace) that would be needed to restore an OnLine
system to that point in time. All disk page copies on the tape reflect the
contents of the disk pages at the time the level-0 archive began. This is true
even for online archives, which are created while users continue to process
data. (Refer to page 4-30 for a description of what happens during an OnLine
archive.)

During a level-0 archive, OnLine copies disk pages selectively; not every
used page is copied. Dbspace pages allocated to OnLine but not yet allocated
to an extent are ignored. (Refer to page 2-114 for a detailed discussion of
extents and allocating pages to an extent.) Pages allocated to the logical log
or physical log are ignored. Temporary tables are scanned and can be copied
during a level-0 archive.

Blobspace blobpages are scanned. OnLine might need to copy specific disk
pages that contain deleted blobs because of requirements related to the
restore procedure. (Refer to page 4-45.)

Mirror chunks are not archived if their primary chunks are accessible.
The configuration file is not part of an OnLine archive.

Refer to page 4-37 for more information about the archive criteria and how
OnLine determines whether or not a page should be copied to disk during a
level-0 archive.

3-44 IBM Informix OnLine Database Server Administrator's Guide

Archive Types

Level-1 Archive

A level-1 archive contains a copy of every disk page that has changed since the
last level-0 archive. All disk page copies on the tape reflect the contents of the
disk pages at the time the level-1 archive began.

Level-2 Archive

A level-2 archive contains a copy of every disk page that has changed since the
last level-0 or level-1 archive, whichever is most recent. All disk page copies
on the tape reflect the contents of the disk pages at the time the level-2 archive
began.

Incremental Archive Strategy

Figure 3-2 illustrates an incremental archiving strategy. Each of the archive
levels is defined as follows:

= Level-0 archive is created once every nine days.

= Level-1 archive is created once every three days.

= Level-2 archive is created once a day.

Figure 3-2
Incremental archive example

Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu

0 0

Operating OnLine 3-45

How Long Will an Archive Take?

3-46

How Long Will an Archive Take?

The number of variables that you must consider in estimating the time for an
archive make the task more of an art than a science. Each of the following
items has an impact on the time needed to complete the archive:

= Overall speed of the tape device, including operating-system
overhead

» Level of the archive (level-0, level-1, or level-2)
= Volume of used pages managed by OnLine
= Amount and type of database activity during the archive

= Amount and type of database activity in the period since the last
archive

= Alertness of the operator to tape-changing demands

Unfortunately, the UNIX time command cannot help you estimate the time
needed to complete an archive. The best approach is to create an archive and
try to gauge the time for subsequent archives using the first one as a base of
comparison.

If you create an archive through the DB-Monitor Archive menu, Create
option, messages display the percentage of the archive that is complete.
These messages might help you estimate how much time and tape you need
to complete the archive, but the %done value can be misleading. The
confusion arises because the calculation for %@one is based on total allocated
OnLine space, but only used pages are archived.

Consider this example. A 100-megabyte chunk allocated to OnLine contains
75 megabytes of used pages and 25 megabytes of free space, which is located
at the end of the chunk. The archive proceeds at a steady rate as the %done
value climbs from 0 %gone to 75 %one. When tbtape reaches the last 25
percent of the chunk, it determines that the remaining pages are free space
and therefore are not archived. The value of %done suddenly jumps from 75
to 100 and the archive is complete.

IBM Informix OnLine Database Server Administrator's Guide

Plan the Archive Schedule

Plan the Archive Schedule

Each of the following considerations affects the archive schedule you create
for your environment:

= If you want to minimize the time for a restore

= If you want to minimize the time to create an archive

» If you want to create online archives

= If you must use the same tape drive to create archives and to back up
the logical logs

= If the operator is periodically unavailable
Try to avoid unscheduled archives. Because the following administrative
changes require a level-0 archive as part of the procedure, consider waiting
to make these changes until your next regularly scheduled level-0 archive:

» Changing a tape device pathname from /dev/null (archive after)

= Adding logging to a database (archive before)

= Mirroring a dbspace that contains logical log files (archive after to
initiate mirroring)

= Adding a logical log file (archive after to make log file available)
= Dropping a logical log file (archive after)
= Moving one or more logical log files (archives during the procedure)

= Changing the size of the physical log (archive after reinitializing
shared memory)

To ensure the integrity of your archives, periodically verify that all OnLine
data and control information is consistent before you create a level-0 archive.
You need not perform this checking before every level-0 archive, but
Informix recommends that you keep the necessary tapes from the most recent
archive created immediately after OnLine was verified to be consistent. Refer
to page 4-6 for a detailed explanation of this consistency check.

During a restore, OnLine reads and writes all relevant archive tapes to disk.
Then OnLine reads all logical log files since the last archive and rolls the log
records forward. The time required to perform a restore is a function of two
things:

Operating OnLine ~ 3-47

Plan the Archive Schedule

= Size and number of archives. The minimum number of archives is
just the single level-0 archive. The maximum number is three, one
archive of each level.

= Size and number of logical log files since the last archive.
The size of the level-0 archive is fixed because it is the sum of all in-use data.
The size of the level-1 archive is a function of the time between your level-0
archives. The more often you create level-0 archives, the smaller each level-1
archive will be. This same relationship holds between level-1 archives and

level-2 archives and between level-2 archives and the number of logical log
files.

Minimize Restore Time

Use the following strategy to minimize the time needed to restore an OnLine
system:

= Createalevel-0 archive as often as is practicable, perhaps every three
days.

= Create a level-1 archive daily.

= Do not use level-2 archives.
The time required for any possible restore is limited to the time needed to
read and process the following data:

= Alevel-0 archive, representing the whole system

= Alevel-1 archive, representing from one to three days’ activity

= Logical log files, representing less than a day’s work

3-48 IBM Informix OnLine Database Server Administrator's Guide

Plan the Archive Schedule

Minimize Archive Time

You can reduce the number of disk pages that must be copied during an
archive by storing explicitly created temporary tables in a dedicated dbspace
and then dropping that dbspace before you archive.

For example, suppose an application in your environment uses temporary
tables to load data. If you load 250,000 rows into a temporary table and then
later delete that temporary table, the pages that were allocated to the table are
archived. If, however, you create the temporary table in a separate dbspace
dedicated to temporary tables and then drop the dbspace before the archive,
none of the pages is archived.

Online Archives

If the archives must be created online, be aware of some of the inconve-
niences associated with the online archive. Online archive activity forces
pages to remain in the physical log until the archive process, tbtape, has
verified that it has a copy of the unchanged page. In this way, the online
archive can slow checkpoint activity, which can contribute to a loss in
performance.

Single Tape Drive

If you are creating an archive with the only available tape device, you cannot
back up any logical log files until the archive is complete. If the logical log
files fill during the archive, normal OnLine processing halts.

This problem cannot occur if you create your archives in quiescent mode. But
if you want to create online archives with only one tape device, you can take
the following precautions:

= Configure OnLine for a large logical log.

= Store all explicitly created temporary tables in a dedicated dbspace
and drop that dbspace before each archive.

= Create the archive when database activity is low.

= Free as many logical log files as possible before you begin the
archive.

Operating OnLine 3-49

Examine Your Archive Configuration

3-50

If the logical log files fill in spite of these precautions, you can either leave
normal processing suspended until the archive completes or cancel the
archive.

(It is possible that even the archive will hang eventually, the result of a
deadlock-like situation. The archive is synchronized with OnLine check-
points. It can happen that the archive procedure must wait for a checkpoint
to synchronize activity. The checkpoint cannot occur until all user processes
exit critical sections of code. The user processes cannot exit their sections of
code because normal OnLine processing is suspended.)

Operator Availability

The operator should be available throughout a multivolume archive to
mount tapes as prompted.

An archive might take several reels of tape. If an operator is not available to
mount a new tape when one becomes full, the online archive waits.

During this wait, OnLine suspends checkpoint activity. If an operator
permits the archive to wait long enough, OnLine processing can hang,
waiting for a checkpoint.

In addition, if you are working in a single-tape-device environment, the
logical logs can fill, which can hang processing as well.

Examine Your Archive Configuration

Complete the steps outlined here to examine your archive configuration and
verify that it is appropriate for your OnLine environment. Consider the
planning issues raised in the scheduling topic, which begins on page 3-47.

Your Configuration File

To examine your specified configuration, you need a copy of your OnLine
configuration file, SINFORMIXDIR/etc/$TBCONFIG. Execute tbstat -c while
OnLine is running.

The configuration displayed by DB-Monitor (Status menu, Configuration
option) is a copy of your current OnLine configuration, which can differ from
the values stored in your configuration file.

IBM Informix OnLine Database Server Administrator's Guide

Examine Your Archive Configuration

For further information about the relationship of the current configuration to
the values in the configuration file (SINFORMIXDIR/etc/$TBCONFIG), refer
to page 1-11.

The Archives

In the event of a system failure, OnLine can restore all data that has been
archived. Without archives, you cannot perform a restore.

Do not use the OnLine data-migration utilities to unload data as a substitute
for a complete archive. None of the data-migration utilities are coordinated
with the information stored in the logical log files. You cannot roll forward
information from the logical log without the archives.

To ensure the integrity of your archives, periodically verify that all OnLine
data and control information is consistent before you create a level-0 archive.
Refer to page 4-6 for a detailed explanation of this consistency check.

TAPEDEV Configuration Parameter

The TAPEDEV configuration parameter specifies the archive tape device. The
value you choose for TAPEDEV has the following implications:

= If the archive device differs from the logical log backup device, you
can schedule online archives without regard to the amount of free
space remaining in the logical log.

= You can create remote archives if you specify TAPEDEV to be a tape
device managed by another host machine.

= If you specify /dev/null as the archive device, you avoid the
overhead of the archive. However, you cannot perform a restore.

Look at the copy of your configuration file and compare the values specified
by TAPEDEV and LTAPEDEV. LTAPEDEYV is the logical log tape device.

Ideally, TAPEDEV and LTAPEDEYV each specify a different device. When this is
the case, you can execute online archives whenever you choose. The amount
of free space in the logical log is irrelevant.

Operating OnLine 3-51

Change Pathname of Archive Tape Device

3-52

If the TAPEDEV and LTAPEDEYV values are the same, you must ensure that the
logical logs do not fill before the archive completes. If the logical log files fill
while the archive is under way, normal OnLine processing stops. Refer to
page 3-47 for guidelines on planning an archive schedule. Refer to page 3-59
for an explanation of what happens if the logical log files become full during
an archive.

TAPEBLK and TAPESIZE

Verify that the current block size and tape size are appropriate for the device
specified. The block size of the logical log tape device is specified as TAPEBLK.
The tape size is specified as TAPESIZE.

If TAPEDEV is specified as /dev/null, block size and tape size are ignored.

Specify TAPEBLK as the largest block size permitted by your tape device.
OnLine does not check the tape device when you specify the block size.
Verify that the TAPEDEV tape device can read the block size that you specify.
If not, you cannot restore the tape.

Specify TAPESIZE as the maximum amount of data that should be written to
this tape.

Change Pathname of Archive Tape Device
The archive tape device is specified as TAPEDEV in the configuration file.

You can change the value of TAPEDEV while OnLine is in online mode. The
change takes effect immediately.

Be prepared to create a level-0 archive immediately after you make the
change, unless you change the value to /dev/null.

You can establish the value of TAPEDEV as a symbolic link, enabling you to
switch between more than one tape device without changing the pathname.

Important: Any time you change the physical characteristics of the tape device, you
must create a level-0 archive. Otherwise, you might be unable to restore the complete
set of tapes. OnLine cannot switch tape devices during a restore. OnLine will expect
all archive tapes to have the same block size and tape size as were specified at the time
of the most recent level-0 archive.

IBM Informix OnLine Database Server Administrator's Guide

Change Pathname of Archive Tape Device

If you change the pathname to /dev/null, the change proceeds more
smoothly if you make the change while OnLine is offline. If TAPEDEV is set
to /dev/null, you cannot perform a restore.

The tape device specified by the pathname must perform a rewind before
opening and on closing.

If you are logged in as user informix, you can change the value of TAPEDEV
from within DB-Monitor or from the command line. If you are logged in as
root, you must use the command-line option.

Preliminary Considerations

Tape devices must rewind before opening and on closing to be compatible
with OnLine operation. The reason for this is a series of checks that OnLine
performs before writing to a tape.

Whenever OnLine attempts to write to any tape other than the first tape in a
multivolume backup or archive, OnLine first reads the tape header to ensure
the tape is available for use. Then the device is closed and reopened. OnLine
assumes the tape was rewound on closing and begins to write.

Whenever OnLine attempts to read a tape, it first reads the header and looks
for the correct information. OnLine cannot find the correct header infor-
mation at the start of the tape if the tape device did not rewind on closing
during the write process.

Create a level-0 archive immediately after you change the value of TAPEDEV
to ensure a proper restore. This is done for two reasons.

First, the OnLine restore procedure cannot switch tape devices as it attempts
to read the archive tapes. If the physical characteristics of the archive tapes
change during the restore, either because of a new block size or tape size, the
restore fails.

Second, the restore fails if the tape device specified as TAPEDEV at the time of
the level-0 archive is unavailable when the restore begins.

Important: At the beginning of a restore, the OnLine configuration, including
archive devices, must reflect the configuration as it was when the level-0 archive was
created.

Operating OnLine 3-53

Change Pathname of Archive Tape Device

3-54

To specify an archive tape device on another host machine, use the following
syntax:

host _machi ne_nane: t ape_devi ce_pat hnane:

The following example specifies an archive tape device on the host machine
kyoto:

kyot o: / dev/ rnt 01

The host machine where the tape device is attached must permit user
informix to run a UNIX shell from your machine without requiring a
password. If your machine does not appear in the hosts.equiv file of the
other host machine, it must appear in the .rhosts file in the home directory of
the informix login. If you are creating archives as root, the machine name
must appear in the .rhosts file for root on the other host machine.

Verify that the block size and the tape size are correct for the new device.
Block size for the archive tape device is specified as TAPEBLK. Tape size is
specified as TAPESIZE. If you need to change these values, you can do so at
the same time that you change the value of TAPEDEV.

Specify TAPEBLK as the largest block size permitted by your tape device.
Specify TAPESIZE as the maximum amount of data that should be written to
this tape.

Changing the value of TAPEDEV from a real device to /dev/null proceeds
more smoothly if you do it when OnLine is offline. As soon as you make the
change, you are only able to restore your system to the point of your most-
recent archive and logical log backup tapes. You cannot restore work done
since then.

From DB-Monitor
1. Select the Archive menu, Tape-Parameters option to change the
value of TAPEDEV. DB-Monitor displays the current value.

2. Enter the full pathname value for the archive tape device in the Tape
Devi ce field.

3. Enter new values in the device Bl ock Si ze and Tape Si ze fields, if
appropriate.

IBM Informix OnLine Database Server Administrator's Guide

Change Block Size of Archive Tape Device

From the Command Line
1. Use an editor to edit the file specified by
SINFORMIXDIR/etc/$TBCONFIG.
2. Change the value of TAPEDEV.

3. Change the values for the archive device block size (TAPEBLK) and
tape size (TAPESIZE) at the same time, if appropriate.

Change Block Size of Archive Tape Device

The block size of the archive tape device is specified as TAPEBLK in the config-
uration file. The block size is expressed in kilobytes.

You can change the value of TAPEBLK while OnLine is in online mode. The
change takes effect immediately.

Specify the largest block size permitted by your tape device.
If the tape device pathname is /dev/null, the block size is ignored.

If you are logged in as user informix, you can change the value of TAPEBLK
from within DB-Monitor or from the command line. If you are logged in as
root, you must use the command-line option.

Important: Any time you change the physical characteristics of the tape device, you
must create a level-0 archive. Otherwise, you might be unable to restore the complete
set of tapes. OnLine cannot switch tape devices during a restore. OnLine will expect
all archive tapes to have the same block size and tape size as were specified at the time
of the most recent level-0 archive.

OnL.ine does not check the tape device when you specify the block size.
Verify that the tape device specified in TAPEDEV can read the block size that
you specified. If not, you cannot restore the tape.

From DB-Monitor

1. From within DB-Monitor, select the Archive menu, Tape-Parameters
option to change the value of TAPEBLK. DB-Monitor displays the
current value.

2. Enter the new block size expressed in kilobytes in the Bl ock Si ze
field that is associated with the Tape Devi ce field.

Operating OnLine ~ 3-55

Change Tape Size of Archive Tape Device

3-56

From the Command Line

1. Tochange the value of TAPEBLK from the command line, use an
editor to edit the file specified by $INFORMIXDIR/etc/$TBCONFIG.

2. Change the value of TAPEBLK to the new block size, expressed in
kilobytes.

Change Tape Size of Archive Tape Device

The tape size of the archive tape device is specified as TAPESIZE in the config-
uration file. Tape size refers to the maximum amount of data that should be
written to this tape, expressed in kilobytes.

You can change the value of TAPESIZE while OnLine is in online mode. The
change takes effect immediately.

If the tape device pathname is /dev/null, the tape size is ignored.

If you are logged in as user informix, you can make this change from within
DB-Monitor or from the command line. If you are logged in as root, you must
use the command-line option.

Important: Any time you change the physical characteristics of the tape device, you
must create a level-0 archive. Otherwise, you might be unable to restore the complete
set of tapes. OnLine cannot switch tape devices during a restore. OnLine will expect
all archive tapes to have the same block size and tape size as were specified at the time
of the most recent level-0 archive.

From DB-Monitor

1. From within DB-Monitor, select the Archive menu, Tape-Parameters
option to change the value of TAPESIZE. DB-Monitor displays the
current value.

2. Enter the new tape size expressed in kilobytes in the Tape Si ze field
that is associated with the Tape Devi ce field.

IBM Informix OnLine Database Server Administrator's Guide

Create an Archive, Any Type

From the Command Line
1. Tochange the value of TAPESIZE from the command line, use an
editor to edit the file specified by $INFORMIXDIR/etc/$TBCONFIG.

2. Change the value of TAPESIZE to the new tape size, expressed in
kilobytes.

Create an Archive, Any Type

An archive can require multiple tapes. After a tape fills, OnLine rewinds the
tape, prompts the operator with the tape number for labelling, and prompts
the operator again to mount the next tape, if one is needed.

Preliminary Considerations
You can create an archive while OnLine is in online or quiescent mode.

Each time you create a level-0 archive, also create a copy of the OnLine
configuration file as it exists at the time that the archive begins. You will need
this information if you must restore OnLine from the archive tape.

If the total available space in the logical log files is less than half of a single
log file, OnLine does not create an archive. Back up the logical log files and
then request the archive again.

You cannot add a logical log file or mirroring during an archive.

If only one tape device is available on your system, refer to page 3-49 for
more information about the steps you can take to reduce the likelihood of
filling the logical log during the archive.

The terminal from which you initiate the archive command is dedicated to
the archive (displaying messages) until the archive is complete.

If you are logged in as user informix, you can create any type of archive from
within DB-Monitor or from the command line. If you are logged in as root,
you must use the command-line option.

Operating OnLine 3-57

Create an Archive, Any Type

3-58

A good practice to follow is to label archive tapes with the archive level, date,
time, and tape number provided by OnLine, as shown in the following
example:

Level 1: Wed Nov 27, 1991 20:45 Tape # 3 of xx

Each archive begins with its first tape reel numbered 1 and each additional
tape reel incremented by 1. A five-volume archive is numbered 1 through 5.
(You must supply the value for xx after the archive completes.)

From DB-Monitor

1. From within DB-Monitor, take OnLine to the appropriate mode,
online or quiescent.

2. Select the Archive menu, Create option to begin the archive.
DB-Monitor executes the tbtape process, which begins an interactive
dialogue on the screen.

3. Place a write-enabled tape on the tape drive device (defined by
TAPEDEV). Put the device online with the appropriate operating-
system command.

The prompts from DB-Monitor ask you to specify the archive level.

4. Follow the prompts for labelling and mounting new tapes. A
message informs you when the archive is complete.

From the Command Line

1. From the command line, take OnLine to the appropriate mode,
online or quiescent.

2. Execute tbtape -s.

Do not create an archive from the command line in background
mode (that is, using the UNIX & operator on the command line). The
create-archive process is interactive, prompting for new tapes if nec-
essary. It is easy to miss the prompts and delay the archive process if
it is executed in background mode.

IBM Informix OnLine Database Server Administrator's Guide

If the Logical Log Files Fill During an Archive

3. Place a write-enabled tape on the tape drive device (defined by
TAPEDEV). Put the device online with the appropriate operating-
system command.

The prompts from tbtape ask you to specify the archive level.

4. Follow the prompts for labelling and mounting new tapes. A
message informs you when the archive is complete. For further infor-
mation about the tbtape utility, refer to page 7-102.

If the Logical Log Files Fill During an Archive

If the logical log files fill during an archive, OnLine displays a message at the
system console and normal processing is suspended.

Two Tape Drives

If you have two tape devices available to OnLine, log in as user informix at
a free terminal.

Verify that LTAPEDEV and TAPEDEYV specify different pathnames that corre-
spond to separate tape devices. If they do, back up the logical log files by
executing either tbtape -a or tbtape -c, or by selecting either the Automatic-
Backup or Continuous-Backup option from the Logical-Logs menu.

If LTAPEDEV and TAPEDEV are identical, you might be able to assign a
different value to the logical log tape device (LTAPEDEV) and initiate logical
log file backups. However, this option is only a solution if the new value of
LTAPEDEYV is compatible with the block size and tape size used to create
earlier logical log file backups. (All tapes must reflect the physical character-
istics specified at the time of the most recent level-0 archive.) Otherwise, your
options are to either leave normal OnLine processing suspended until the
archive completes or cancel the archive.

Operating OnLine 3-59

If an Archive Terminates Prematurely

3-60

One Tape Drive

If only one tape device is available to OnLine, you can take either one of two
actions:

= Leave OnLine processing suspended while the archive completes.
= Cancel the archive and try again later.

The archive messages display an estimate of how much of the archive is
complete, expressed as a percentage. If the archive is nearly complete, you
might be willing to hold up your users until the archive finishes. The archive
might hang eventually; however, it is impossible to determine ahead of time
if this is the case.

To cancel the archive, press the Interrupt key at the terminal dedicated to the
archive process. By cancelling the archive, you free the tape device so that it
can be used to back up the full logical log files.

If an Archive Terminates Prematurely

If an archive is cancelled or interrupted, there is a slight chance that the
archive progressed to the point where it can be considered complete.

Use DB-Monitor to determine if the archive must be redone. Select the Status
menu, Archive option. The screen display lists all completed archives. If the
archive just terminated is displayed on this screen, the tape output was
completed. Otherwise, you must redo the archive.

IBM Informix OnLine Database Server Administrator's Guide

Monitor OnLine Activity

Monitor OnLine Activity

Many OnLine structures can be monitored for more than one kind of infor-
mation. For example, you can monitor chunks for either fragmentation or
page usage.

Other OnL.ine entities are too general to be researched directly. For example,
table information is too broad a category. What aspect of the table interests
you? Indexes? Number of data rows? Disk space usage by extent and page

type?

For background information about internal OnLine structures mentioned in
this section, refer to Chapter 2, “System Architecture.”

Monitor Archive History

DB-Monitor lists the archive tapes and logical log backup tapes needed to
perform a restore of the current OnLine system.

From DB-Monitor
From DB-Monitor, select the Status menu, Archive option.

The display lists the archives that you would need to perform an OnLine
restore now. For this reason, after you create a new level-1 archive, earlier
level-2 archives no longer appeatr.

The following information displays for each archive:

= Archive level (0, 1, or 2)
= Date and time of the archive
= ID number of the logical log that was current when the archive began

Operating OnLine 3-61

Monitor Archive History

3-62

From the Command Line

From the command line, execute tbcheck -pr to display root dbspace
reserved page information. The last pair of reserved pages contains the
following information for the most recent archive:

= Archive level (0, 1, or 2)

= Effective date and time of the archive

= Time stamp describing when the archive began (expressed as a
decimal)

= ID number of the logical log that was current when the archive began

= Physical location in the logical log of the checkpoint record (that was
written when the archive began)

The effective date and time of the archive are the date and time of the check-
point that this archive took as its starting point.

For example, if no one had accessed OnLine since Tuesday at 7 p.m. and you
create an archive on Wednesday morning, the effective date and time for that
archive would be Tuesday night, reflecting the time of the last checkpoint.
(No checkpoints are performed if activity is zero.)

Refer to page 2-102 for further information about the fields related to
archiving that appear in the reserved page display.

IBM Informix OnLine Database Server Administrator's Guide

Monitor Blobs in a Blobspace

Monitor Blobs in a Blobspace

DB-Monitor measures blobspace availability by providing the number of
used disk pages in the chunk. The tbstat -d display attempts to describe the
the number of blobpages used. The tbcheck -pB display provides the most
accurate assessment of current blobspace storage efficiency.

From DB-Monitor
From DB-Monitor, select the Status menu, Spaces option.

The first screen display lists the blobspace ID number, the name of the
blobspace, the number of assigned chunks, and the mirroring status of the
blobspace. If an asterisk appears next to the M rr or field, one of the chunks
in this blobspace is down. Select the blobspace that you want to monitor.

The second screen display lists the following chunk information for each
dbspace:

= ChunkID

= Chunk pathname and offset

= Mirror status flags

= Pages in the chunk

= Number of used disk pages in the chunk

If a chunk is mirrored, both the primary chunk and the mirror chunk shared
the same chunk ID number.

The chunk status flags are defined as follows:

Flag Description

- Chunk belongs to a dbspace.
Chunk belongs to a blobspace.
Chunk is down, no reads or writes can occur.

Mirror chunk.

O L O w

Chunk is online.

(1of2)

Operating OnLine 3-63

Monitor Blobs in a Blobspace

3-64

Flag Description

P Primary chunk.

R Chunk is currently being recovered.

X New mirror chunk that contains logical log files; a level-0 archive is

needed before the mirror can become active.

(2 0f 2)

From the Command Line

From the command line, execute tbstat -d to obtain information that is
similar to that displayed by the Dbspaces menu, Info option. However, where
DB-Monitor lists total pages and the number used, tbstat -d lists total pages
and, in the bpages field, the approximate number of free blobpages.

The tilde (~) that precedes the bpages value indicates that this number is
approximate because it is derived from the information stored in the disk
version of the chunk’s free-map page, not the version of the free-map page
stored in shared memory.

Another complication is that tbstat -d does not register a blobpage as

available until the logical log in which a blob deletion occurred is backed up
and the blobpage is freed. Therefore, if you delete 25 blobs and immediately
execute tbstat -d, the newly freed space does not appear in the tbstat output.

Refer to page 7-84 for further information about the tbstat -d display.

From the command line, you also can obtain an accurate picture of the
amount of available space in a blobspace, by executing tbcheck with the -pB
options. This utility gathers its data from the actual blob-storage statistics.

Execute tbcheck -pB with either a database name or a table name as a
parameter. The display reports the following statistics:

= Number of blobpages used by this table or database in all blobspaces
= Blobpage fullness, by blob, for each blob in this table or database

IBM Informix OnLine Database Server Administrator's Guide

Monitor Blobs in a Dbspace

The number of free blobpages is derived from the information stored in the
shared-memory version of the chunk’s free-map page, not the disk version.
These statistics are the most current possible and might conflict with the
output of tbstat -d, which is derived from the disk version of the free-map

page.
Refer to page 5-5 for further information about how to interpret the display
and modify your blobspace blobpage size to improve performance.

From the command line, execute thcheck with the -pe options for a detailed
listing of chunk usage first the dbspaces and then the blobspaces. The display
provides the following blobspace usage information:

= Names of the tables that store blobs, by chunk

= Number of disk pages used, by table

= Number of free disk pages remaining, by chunk

= Number of overhead pages used, by chunk

Refer to page 7-43 for further information about the tbcheck -pe display.

Monitor Blobs in a Dbspace

You can learn the number of dbspace pages that are used by blobs, but little
else.

From the command line, execute tbcheck with the -pT options and either a
database name or a table name as a parameter. For each table in the database,
or for the specified table, OnLine displays a general tblspace report.

Following the general report is a detailed breakdown of page use in the
extent, by page type. Look for the blobpage type for blob information.

More than one blob can be stored on the same dbspace blobpage. Therefore,
you can count the number of pages used to store blobs in the tblspace, but
you cannot estimate the number of blobs in the table.

Refer to page 7-44 for further information about the tbcheck -pT utility
displays.

Operating OnLine 3-65

Monitor Buffers

Monitor Buffers

Use the tbstat -b, -X, and -B options to identify a specific user process that is
holding a resource that might be needed by another user process.

The tbstat -p option can help you assess performance as measured by the
percentage of cached reads and writes.

For monitoring information that describes the efficiency of the buffer pool,
refer to page 3-68 (buffer-pool activity).

tbstat -b

From the command line, execute tbstat -b to obtain the following buffer
statistics:

= General buffer statistics (total number, number modified)
= Address of each user process currently holding a buffer
= Page numbers for those pages in currently held buffers
= Address of the first user process waiting for each buffer

You can compare the addresses of the user processes to the addresses that
appear in the tbstat -u display to obtain the process ID number.

Refer to page 7-82 for further information about the tbstat -b output.

tbstat -X

Execute tbstat -X to obtain the same information as tbstat -b, along with the
complete list of all user processes that are waiting for buffers, not just the first
waiting process.

Refer to page 7-101 for further information about the tbstat -X output.

3-66 IBM Informix OnLine Database Server Administrator's Guide

Monitor Buffers

thstat -B
Execute tbstat -B to obtain the following buffer statistics:

= Address of every regular shared-memory buffer
= Page numbers for all pages remaining in shared memory
= Address of the first user process waiting for each buffer

Refer to page 7-84 for further information about the tbstat -B output.

thstat -p

Execute tbstat -p to obtain statistics about cached reads and writes. The
caching statistics appear in four fields on the top row of the output display.
The first pair of statistics appears in the third and fourth positions:

buf r eads is the number of reads from shared-memory buffers.
%cached is the percentage of reads cached.

The second pair of statistics appears in the seventh and eighth positions of
the top row of the display:

bufwits is the number of writes to shared memory.

Ycached is the percentage of writes cached.

Note that the number of reads or writes can appear as a negative number if

the number of occurrences exceeds 232, To reset the profile counts, execute
thstat -z.

Refer to page 7-92 for further information about the tbstat -p output.

Execute tbstat -P to obtain the tbstat -p display, with an additional field,
Bl Gr eads, the number of big-buffer reads. Refer to page 2-55 for further
information about the big buffers.

Operating OnLine 3-67

Monitor Buffer-Pool Activity

Monitor Buffer-Pool Activity

Monitor buffer-pool activity to determine the general availability of buffers
and to isolate the activity that is triggering buffer-pool flushing. (Refer also
to page 3-66 for general buffer statistics.)

The tbstat -p output contains the following two statistics that describe buffer

availability:

ovbuf f lists the number of times that OnLine attempted to exceed the
maximum number of shared buffers, BUFFERS. (The ovbuf f
field appears in the third row of output, fourth position.)

buf wai ts lists the number of times processes waited for a buffer (any

buffer). (The buf wai t s field appears in the fourth row of
output, first position.)

Refer to page 7-92 for further information about the tbstat -p output.

thstat -F

From the command line, execute tbstat -F to obtain a count of the writes
performed by write type. Refer to page 2-75 for a definition of each of the
following write types:

= Foreground write

= LRU write

= Idle write

s Chunk write

In addition, tbstat -F lists the following page-cleaner information:

= Page-cleaner number and shared-memory address
= Current state of the page cleaner
Details about the function and activities of the page-cleaner daemon

processes are described on page 2-34. Refer to page 7-87 for further infor-
mation about the tbstat -F output.

3-68 IBM Informix OnLine Database Server Administrator's Guide

Monitor Checkpoints

thstat -R

Execute tbstat -R to obtain information about the number of buffers in each
LRU queue and the number and percentage of the buffers that are modified.

Details about the function of the LRU queues are described on page 2-57.
Refer to page 7-95 for further information about the tbstat -R output.

thstat -D

Execute tbstat -D to obtain, by chunk, the number of pages read and the
number of pages written.

Refer to page 7-86 for further information about the tbstat -D output.

Monitor Checkpoints

Monitor checkpoint activity to determine if your checkpoint interval
(specified as CKPTINTVL in the configuration file) is appropriate for your
processing environment.

From DB-Monitor
From DB-Monitor, select the Status menu, Profile option.

The Checkpoi nts field lists the number of checkpoints that have occurred
since OnLine was brought online.

The Check Waits field defines the number of times that a user process (any
user process) waits for a checkpoint to finish. A user process is prevented
from entering a critical section during a checkpoint. For further information
about critical sections, refer to page 2-28.

Refer to page 3-83 for a complete explanation of the Profile option.
From DB-Monitor, select the Force-Ckpt menu.

The display lists the time of the last checkpoint and the last time that OnLine
checked to determine if a checkpoint was needed.

Operating OnLine 3-69

Monitor Chunks

A checkpoint check is performed if the time specified by CKPTINTVL has
elapsed since the last checkpoint. If nothing is in the buffers waiting to be
written to disk at the time of the checkpoint check, no checkpoint is needed.
The time in the Last Checkpoi nt Done field is not changed until a check-
point occurs.

From the Command Line

From the command line, execute tbstat -m to view the last 20 entries of the
OnLine message log. If a checkpoint record does not appear in the last 20
entries, read the message log directly using a UNIX editor. Individual check-
point records are written to the log when the checkpoint ends. No record is
written when a checkpoint check occurs and no checkpoint occurs.

From the command line, execute tbcheck -pr to obtain further information
about the state of OnLine at the time of the last checkpoint. Refer to page 2-97
for a detailed description of each field in the checkpoint reserved page.

From the command line, execute tbstat -p to obtain the same checkpoint
information as is available from the Status menu, Profile option (Check-
poi nts and Check Waits fields). Refer to page 7-92 for more information
about the tbstat -p display.

Monitor Chunks

Monitor the OnLine chunks to check for fragmentation (tbcheck -pe) or to
check the availability of free space throughout allocated disk space (all
options).

From DB-Monitor
From DB-Monitor, select the Status menu, Spaces option.

The first screen display lists the blobspace or dbspace ID number, the name
of the blobspace or dbspace, the number of assigned chunks, and the
mirroring status of the blobspace or dbspace. If an asterisk appears next to
the M rror field, one of the chunks in this dbspace or blobspace is down.
Select the dbspace or blobspace that you want to monitor.

3-70 IBM Informix OnLine Database Server Administrator's Guide

Monitor Chunks

The second screen display lists the following chunk information for each
dbspace:

s ChunkID

s Chunk pathname and offset

= Mirror status flags

= Pages in the chunk

= Number of used disk pages in the chunk

If a chunk is mirrored, both the primary chunk and the mirror chunk shared
the same chunk ID number.

The chunk status flags are defined as follows:

Flag Description

- Chunk belongs to a dbspace.

Chunk belongs to a blobspace.

Chunk is down, no reads or writes can occur.
Mirror chunk.

Chunk is online.

Primary chunk.

Chunk is currently being recovered.

X ™ W O ZT U W

New mirror chunk that contains logical log files; a level-0 archive is
needed before the mirror can become active.

From the Command Line

From the command line, execute tbstat -d to obtain information that is
similar to the information available from the Dbspaces menu, Info option.
However, where DB-Monitor lists the number of used disk pages, tbstat -d
lists the number of free disk pages and, in the field bpages, the approximate
number of free blobpages. For further information about the bpages field,
refer to page 3-63.

Operating OnLine 3-71

Monitor Chunks

Execute tbcheck -pr to obtain the chunk information that is stored in the root
dbspace reserved page. Refer to page 2-100 for a detailed description of each
field in the chunk reserved page, PCHUNK.

Execute tbcheck -pe to obtain the physical layout of information in the
chunk. The chunk layout is sequential, and the number of pages dedicated to
each table is shown. The following information displays:

= Dbspace name, owner, and number
= Number of chunks in the dbspace

This output is useful for determining the extent of chunk fragmentation. If
OnLineis unable to allocate an extent in a chunk despite an adequate number
of free pages, the chunk might be badly fragmented.

Refer to page 7-43 for further information about the tbcheck -pe output.

Depending on the specific circumstances, you might be able to eliminate
fragmentation by using the ALTER TABLE statement to rebuild the tables. For
this tactic to work, the chunk must contain adequate contiguous space in
which to rebuild each table. In addition, the contiguous space in the chunk
must be the space that OnLine normally allocates to rebuild the table. (That
is, OnLine allocates space for the ALTER TABLE processing from the
beginning of the chunk, looking for blocks of free space that are greater than
or equal to the size specified for the NEXT EXTENT. If the contiguous space is
located near the end of the chunk, OnLine could rebuild the table using
blocks of space that are scattered throughout the chunk.)

Use the ALTER TABLE statement on every table in the chunk. Follow these
steps:

1. For each table, drop all the indexes except one.
2. Cluster the remaining index using the ALTER TABLE statement.
3. Re-create all the other indexes.

You eliminate the fragmentation in the second step, when you rebuild the
table by rearranging the rows. In the third step, you compact the indexes as
well because the index values are sorted before they are added to the B+ tree.
You do not need to drop any of the indexes before you cluster one but, if you
do, the ALTER TABLE processing is faster and you gain the benefit of more
compact indexes.

3-72 IBM Informix OnLine Database Server Administrator's Guide

Monitor Configuration Information

A second solution to chunk fragmentation is to unload and reload the tables
in the chunk.

To prevent the problem from recurring, consider increasing the size of the
tbispace extents.

Monitor Configuration Information

Configuration information is needed for documentation during OnLine
administration.

From DB-Monitor
From DB-Monitor, select the Status menu, Configuration option.

This option creates a copy of the current, effective configuration and stores it
in the directory and file you specify. If you have modified the configuration
parameters and have not yet reinitialized shared memory, the effective
parameters might be different than the parameters that appear in
SINFORMIXDIR/etc/$TBCONFIG.

If you specify only a filename, the file is stored in the current working
directory by default.

From the Command Line

From the command line, execute tbstat -c to obtain a copy of the file specified
by the environment variable TBCONFIG.

If TBCONFIG is not specified, OnLine displays the contents of $INFOR-
MIXDIR/etc/tbconfig. Refer to page 1-13 for a complete listing of the
configuration file.

From the command line, execute tbcheck -pr to obtain the configuration
information that is stored in the root dbspace reserved page. The reserved
page contains a description of the current, effective configuration.

If you change the configuration parameters from the command line and run
tbcheck -pr before you reinitialize shared memory, tbcheck discovers that
values in the configuration file do not match the current values in the
reserved pages. A warning message is returned.

Operating OnLine 3-73

Monitor Databases

3-74 IBM Informix On

Refer to page 2-97 for a detailed description of each field in the configuration
reserved page.

Monitor Databases

This section describes information that is available to you about OnLine
databases. Monitor databases to track disk space usage by database.

From DB-Monitor
From DB-Monitor, select the Status menu, Databases option.

This option lists all OnLine databases (up to a limit of 100). For each database,
DB-Monitor provides the following information:

= Database name

= Database owner (user who created the database)

= Dbspace location where the system catalog for this database resides

= Date that the database was created (or the time, if the database was
created today)

= Logging status flag of the database
Logging status is indicated with three flags: B for buffered logging, N for no

logging, and Ufor unbuffered logging. If an asterisk appears by the U, the
database is ANSI-compliant.

From the Command Line

From the command line, execute tbcheck -pc with a database name as a
parameter to obtain further information about every table in the database.
The table information is derived from the database system catalog and
includes the following data:

= Whether the table includes VARCHAR or blob columns

= Number of extents allocated

= First and next extent sizes

= Count of pages used and rows stored

Line Database Server Administrator's Guide

Monitor Dbspaces

Because tbcheck -pc derives its information directly from the tblspace, you
do not need to run the UPDATE STATISTICS statement to ensure that the
output is current.

Refer to page 7-42 for further information about the tbcheck -pc display.

Monitor Dbspaces

Use these options to track available disk space. The Dbspaces menu, Info
option describes the mirror status of each dbspace chunk.

From DB-Monitor
From DB-Monitor, select the Status menu, Spaces option.

The first screen display lists the dbspace ID number, the name of the dbspace,
the number of assigned chunks, and the mirroring status of the dbspace. If an
asterisk appears nextto the M r r or field, one of the chunks in this dbspace is
down. Select the dbspace that you want to monitor.

The second screen display lists the following chunk information for each
dbspace:

= ChunkID

= Chunk pathname and offset

= Mirror status flags

= Pages in the chunk

= Number of used disk pages in the chunk

If a chunk is mirrored, both the primary chunk and the mirror chunk share
the same chunk ID number.

Operating OnLine 3-75

Monitor Dbspaces

The chunk status flags are defined as follows:

Flag Description

- Chunk belongs to a dbspace.
Chunk belongs to a blobspace.
Chunk is down.

Chunk is a mirror chunk.
Chunk is a primary chunk.

Chunk is in recovery mode.

X ™ VW ZT U W

Mirroring has been requested but the chunk contains a logical log
file; a level-0 archive is needed before this mirror can begin
functioning.

From the Command Line

From the command line, execute tbstat -d to obtain the information that is
similar to the information available from the Dbspaces menu, Info option.
However, where DB-Monitor lists the number of used disk pages, tbstat -d
lists the number of free disk pages and, in the bpages field, the approximate
number of free blobpages. For further information about the bpages field,
refer to page 3-63.

For further information about the tbstat -d display, refer to page 7-84.

From the command line, execute tbcheck -pr to obtain the dbspace infor-
mation that is stored in the root dbspace reserved page. The reserved page
contains the following dbspace information:

= dbspace name, owner, and number

= Flags indicating if the dbspace mirror status and if the dbspace is a
blobspace

= Number of chunks in the dbspace

For further information about the fields in the dbspaces reserved page, refer
to page 2-99.

3-76 IBM Informix OnLine Database Server Administrator's Guide

Monitor Disk Pages

Monitor Disk Pages

Use these options to obtain the specific data row rowid or to view a specific
page in ASCII (and hexadecimal). Use the rowid to specify a disk page.

From the command line, execute tbcheck -pD with either a database name or
a table name as the parameter to obtain a listing of every row requested
(either in the database or in the table). If you specify a table name, you can
optionally specify a logical page number. (The logical page number is
contained in the most significant three bytes of the rowid, which displays as
part of this output.) Two examples of the syntax for tbcheck -pD follow:

t bcheck -pD dat abase_nane
tbcheck -pD tabl e_nane | ogi cal _page_nunber

For each row, the page type and rowid is provided. Note that the rowid is
expressed in hexadecimal, but without the usual 0x indicator. For further
information about tbcheck -pD syntax, refer to page 7-42.

The -pD option displays the data page contents in hexadecimal and ASCII.
For data rows that contain blob descriptions, the blob storage medium is
indicated. (Magnetic is specified with 0; optical is specified with 1.)

In summary, tbcheck -pD provides the following information:

= For every data row, the page type and rowid (expressed in
hexadecimal)

= Data page contents in hexadecimal and ASCII
For further information about tbcheck -pD output, refer to page 7-42.

The -pp options of tbcheck provide similar information to the -pD options
but include a detailed listing of the slot table for the data page requested. You
request data pages using tbcheck -pp with the following parameters:

tbcheck -pp table_nane row|D
t bcheck -pp thbl space_nunber | ogical page_nunber

To obtain a specific rowid, you can either write a SELECT statement with the
ROWID function or use the hexadecimal rowid output from tbcheck -pD. If
you use the rowid from tbcheck -pD, remember to prefix 0x to the rowid, as
shown in the following example:

tbcheck -pp stores2:bob.itenms 0x101

Operating OnLine 3-77

Monitor Extents

If you prefer to use a tblspace number and page number, the tblspace number
is stored as a decimal in the partnum column of the systables table. Use the
HEX function to obtain the value as a hexadecimal:

SELECT HEX(partnunm) FROM systabl es
WHERE t abname = tabl enane

You can calculate the page number from the hexadecimal value of the rowid
as follows:

= The two right-most digits of the hexadecimal rowid refer to the slot-
table entry number for this row.
= The remaining digits define the page number.

For further information about tbcheck -pp syntax, refer to page 7-38. For
further information about tbcheck -pp output, refer to page 7-43.

Monitor Extents

Monitor extents to check for chunk fragmentation (tbcheck -pe) or to
determine disk usage by table. Temporary tables are not monitored. Refer to
page 2-114 for further information about OnLine extents.

From the command line, execute tbcheck -pt with a database name or table
name parameter to obtain the following information for each table:

= Number of extents

= First extent size

= Next extent size

Refer to page 7-44 for further information about the tbcheck -pt output.

Execute tbcheck -pe to obtain the physical layout of information in the
chunk. The chunk layout is sequential, and the number of pages dedicated to
each table is shown. The following information displays:

= Dbspace name, owner, and date created

s Usage of each chunk in the dbspace, by chunk number

If OnLine is unable to allocate an extent in a chunk despite an adequate
number of free pages, the chunk might be badly fragmented.

3-78 IBM Informix OnLine Database Server Administrator's Guide

Monitor Index Information

One solution to chunk fragmentation is to cluster the index of all tables in the
chunk using the ALTER TABLE statement. Another solution is to unload and
load the tables in the chunk. (For further information about what to do if
fragmentation exists, refer to page 3-72.) Refer to page 7-43 for further infor-
mation about the tbcheck -pe output.

Execute tbstat -t to obtain general information about the limited set of active
tbispaces. The tbstat -t output includes the tblspace number and the
following four fields:

npages are the pages allocated to the tblspace.
nused are the pages used from this allocated pool.
next ns is the number of extents used.

npdat a is the number of data pages used.

If a specific operation needs more pages than are available (npages minus
nused), a new extent is needed. If there is enough space in this chunk, the
extent is allocated here. If not, OnLine looks in other chunks for the space. If
none of the chunks contain adequate contiguous space, OnLine uses the
largest block of contiguous space it can find in the dbspace. Refer to page 7-98
for further information about the tbstat -t output.

Monitor Index Information

Monitor the indexes to verify index integrity or to monitor the number or
contents of key values in a specific index.

Refer to page 2-133 for a detailed discussion of index page structure. This
background information is needed to interpret most of the tbcheck -pk, -pl,
-pK, and -pL output.

When you check and print indexes with tbcheck, the uppercase options
include rowid checks as part of the integrity checking. The lowercase options
only verify the B+ tree structure. Refer to page 7-36 for further information
about using the tbcheck utility.

The tbcheck -pK or -pL options verify and repair indexes, check rowid
values, and display the index values. Either option performs an implicit
thcheck -ci or -cl.

Operating OnLine 3-79

Monitor Logging Activity

3-80

Execute the -pk or -pK options of tbcheck to obtain all page information. (The
mnemonic -k option refers to “keep all” information.) Execute tbcheck -pk
with a database name or a table name parameter to obtain a listing of the
index key values and the corresponding rowids for each index leaf page. Also
listed is the node page to which each leaf page is joined.

Execute the -pl or -pL options of tbcheck to obtain leaf node information.
Execute tbcheck -pl with a database name or a table name parameter to
obtain a listing of the index key values and the corresponding rowids for each
index leaf node page. Figure 3-3 illustrates a simple index structure.

Figure 3-3

B4 Tree A simple index
Root node structure

v N A

Branch nodes

Leaf nodes

Vv v v

Pointer to data (rowids)

Execute tbcheck -pc with a database name parameter to obtain the following
specific index information organized by table:

= Number of indexes

= Data record size

= Index record size

= Number of records

Monitor Logging Activity

Monitor logging activity to determine the amount of total available space in
the logical log files and the available space in the current log file.

If the total free space in the logical log files is less than half of a single log file,
OnLine does not create an archive.

IBM Informix OnLine Database Server Administrator's Guide

Monitor Logging Activity

Processing stops if OnLine attempts to switch to the next logical log file and
finds that the log file status is not free (F).

From DB-Monitor
From DB-Monitor, select the Status menu, Logs option.

The display contains three sections: physical log, logical log (general), and
the individual logical log files.

The first two sections contain buffer information. This information refers to
the current physical and logical log buffers. The current buffer is identified as
either P1 or P2 (physical log buffer) or L1, L2, or L3 (logical log buffer). The
rest of the fields in the first two sections are the same fields that display if you
execute the tbstat -1 (lowercase L) option.

The third section of the display repeats for every logical log file that OnLine
manages. The status of the logical log file displays as a status flag. This
section contains an additional field, Dospace, that does not appear in the
tbstat -1 output. You might prefer the DB-Monitor display because Dbspace
clearly lists the dbspace in which each logical log file resides. This infor-
mation is not readily available from the command-line option.

Refer to page 7-89 for further information about the logging activity fields
that display in DB-Monitor. (The order of the fields in DB-Monitor varies
slightly from the tbstat -1 output.)

From the Command Line

From the command line, execute thstat -1 to obtain nearly the same infor-
mation that is available from the Status menu, Logs option.

The tbstat -1 output does not list the name of the current physical or logical
log buffers; instead, tbstat -1 displays the address of the current buffer in
shared memory.

The tbstat utility provides the address of the log file descriptor for each
logical log file, but it does not provide the log file dbspace location.
(However, the leading digit of the beginning address of the log file descriptor
is the number of the dbspace in which the log file resides.) Status displays as
a flag. Refer to page 7-89 for a detailed explanation of the logging activity
fields.

Operating OnLine 3-81

Monitor the Message Log

3-82

Execute tbcheck -pr to obtain detailed logical log file information that is
stored in the root dbspace reserved page dedicated to checkpoint infor-
mation. Refer to page 2-97 for a description of each of the fields related to
logical logs (PAGE_CKPT).

Monitor the Message Log

Monitor the message log periodically to verify that OnLine operations are
proceeding normally and that events are being logged as expected. Use a
UNIX editor to read the complete message log. Refer to Chapter 8, “OnLine
Message Log,” for a complete listing of possible message log records and the
meaning of each one.

Monitor the message log for size, as well. Edit the log as needed or back it up
to tape and delete it.

From DB-Monitor
From DB-Monitor, select the Status menu, Configuration option.

Use this option if you do not know the explicit pathname of the OnLine
message log. The pathname of the message log is specified as the value of
MSGPATH.

From the Command Line

From the command line, execute tbstat -m to obtain the name of the OnLine
message log and the 20 most-recent entries.

IBM Informix OnLine Database Server Administrator's Guide

Monitor OnLine Profile

Monitor OnLine Profile

Monitor the OnLine profile to analyze performance over time. The Profile
screen maintains cumulative statistics. Use the tbstat -z option whenever you
wish to reset all statistics to 0.

From DB-Monitor
From DB-Monitor, select the Status menu, Profile option.

The screen display contains 28 separate statistics, as well as the current
OnLine operating mode, the boot time, and the current time.

The field labels on the DB-Monitor profile screen are less cryptic and arranged
in a slightly different order than the fields that display if you execute

tbstat -p. However, all DB-Monitor statistics are included in the tbstat -p
output. Refer to page 7-92 for a detailed explanation of every field that
displays with this option.

From the Command Line

From the command line, execute, tbstat -p to display 33 separate statistics on
OnLine activity. The tbstat -p output contains several fields that are not
included in the DB-Monitor display, including ovbuf f , which is the number
of times that OnLine exceeded the maximum number of shared-memory
buffers. The ovbuf f field is useful in performance tuning. The complete
display is defined on page 7-92.

Execute tbstat -P to obtain the same statistics as are available with tbstat -p,
plus Bl Gr eads, the number of big-buffer reads.

Refer to page 2-55 for further information about the function of big buffers.

Operating OnLine 3-83

Monitor Shared Memory and Latches

3-84

Monitor Shared Memory and Latches

Monitor shared memory (tbstat -0) to capture a static snapshot of OnLine
shared memory that you can use for analysis and comparison.

Monitor latches to determine if a user process is holding a latch or if
contention of shared-memory resources exists.

From the command line, execute tbstat -0 to save a copy of the shared-
memory segment. You can execute tbstat -o with a filename parameter to
specify the file to contain the output. Otherwise, the output is saved to
tbstat.out in the current directory. The shared-memory segment file is the
same size as the shared-memory segment. The size of shared memory is
displayed in the thstat header. After you save a copy of shared memory to a
file, you can execute other tbstat options using the filename as a parameter.
If you do, the tbstat information is derived from the shared-memory segment
stored in the specified file. Refer to page 7-91 for further information about
tbstat -o0. Refer to page 7-80 for further information about tbstat filename
syntax and use.

Execute tbstat -p to obtain the value in the field | chwai t s, which is the
number of times a user process (any process) was required to wait for a
shared-memory latch. A large number of latch waits typically results from a
high volume of processing activity in which most of the transactions are
being logged. (The number of latches is not configurable and cannot be
increased.) Refer to page 7-92 for a complete listing of all fields that display
when you execute tbstat -p.

Execute tbstat -s to obtain general latch information. The output lists the
address of any user process waiting for a latch. You can compare this address
with the users’ addresses in the tbstat -u output to obtain the user process
identification number. Never kill a database server process that is holding a
latch. If you do, OnLine immediately initiates an abort. Refer to page 7-97 for
a complete listing of all fields that display when you execute tbstat -s.

IBM Informix OnLine Database Server Administrator's Guide

Monitor Thlspaces

Monitor Tblspaces

Monitor tblspaces to determine current space availability and allocation by
table.

For further information about monitoring tblspace extents, refer to page 3-78.

From the command line, execute tbstat -t to obtain general information about
the limited set of active (or open) tblspaces. The tbstat -t output includes the
tblspace number and the following four fields:

npages are the pages allocated to the tblspace.
nused are the pages used from this allocated pool.
next ns is the number of extents used.

npdat a is the number of data pages used.

If a specific operation needs more pages than are available (npages minus
nused), a new extent is needed. If there is enough space in this chunk, the
extent is allocated here. If not, OnLine looks in other chunks for the space. If
none of the chunks contain adequate contiguous space, OnLine uses the
largest block of contiguous space it can find in the dbspace. Refer to page 7-98
for a complete listing of all fields that display when you execute tbstat -t.

Execute tbcheck -pT to obtain further information about pages, extents,
rows, and index specifics. The -pT options take either a database name or a
table name as a parameter. Refer to page 7-38 for further information about
the tbcheck -pT syntax and page 7-44 for further information about the
output.

Operating OnLine 3-85

Monitor Users and Transactions

3-86

Monitor Users and Transactions

Monitor users’ database server processes to determine the number and type
of server processes accessing OnLine, and the status of each one.

From DB-Monitor
From DB-Monitor, select the Status menu, User option.
The display provides an overview of database server process activity.

The first field, PI D, is the user process identification number. The second
field, User, is the login ID of the user that created this database server process.

The third field, Locks Hel d, is the number of locks held by the transaction
that is owned by the specified server process.

The fourth and fifth fields are the number of disk reads and write calls made
since the process started.

The last field describes a set of user status flags. A complete description of all
possible user flags is provided on page 7-99.

If a server process displays an X flag in the User St at us field, the process is
in a critical section. No checkpoints can occur until the server process exits
that section of code. Never Kill a database server process that is in a critical
section. If you do, OnLine immediately initiates an abort.

From the Command Line

From the command line, execute, tbstat -u to obtain user information that is
similar to that available from DB-Monitor. In addition, tbstat -u provides the
address of each listed user process, enabling you to track the user process that
is holding a specific latch. Refer to page 7-99 for a complete listing of the
thstat -u fields that refer to database server processes and their meanings.

The tbstat -u option also provides detailed transaction information in the
second section of the display. This information is relevant for administrators
who are working in a client/server environment using IBM Informix STAR or
users who are working in an IBM Informix TP/XA distributed transaction-
processing environment. For detailed discussion of this transaction infor-
mation, refer to page 9-58.

IBM Informix OnLine Database Server Administrator's Guide

Modify OnLine Configuration

If you execute tbstat -u while OnLine is performing fast recovery, several
database server processes might appear in the display. During fast recovery,
each transaction that is rolled forward or rolled back appears in the display.

Modify OnLine Configuration

Your OnLine configuration includes configuration parameters as well as the
number and status of OnLine structures such as blobspaces, dbspaces, and

chunks.

You can configure the areas of OnLine listed next. See the referenced section
and page for more information.

Blobspaces

o “Create a Blobspace” on page 3-88

o “Drop aBlobspace” on page 3-91

Buffers

o “Change the Number of Buffers in the Pool” on page 3-92

o “Change the Size of Either Log Buffer” on page 3-93

Chunks

o “Adda Chunk” on page 3-94

o “Change the Maximum Number of Chunks” on page 3-96
Dbspaces

o “Create a Dbspace” on page 3-97

o “Drop a Dbspace” on page 3-99

Forced residency

o “Enforce/Turn Off Residency for This Session” on page 3-100
o “Enforce/Turn Off Residency” on page 3-100

Mirroring

o “Change the Status of a Mirrored Chunk” on page 3-101

o “Enable Mirroring” on page 3-104

o “Start/End Mirroring in a Blobspace or Dbspace” on page 3-105

Operating OnLine 3-87

Create a Blobspace

3-88

= Physical log
o “Change Physical Log Location or Size” on page 3-107
= Shared-memory parameters
o *“Change the Checkpoint Interval” on page 3-109
o “Change the Destination of Console Messages” on page 3-110
o “Change the Maximum Number of Dbspaces” on page 3-111
o *“Change the Maximum Number of Locks” on page 3-112
o “Change the Maximum Number of Thlspaces” on page 3-113
o “Change the Maximum Number of Users” on page 3-114
o *“Change the Number of Page Cleaners” on page 3-115
Configuration issues that affect the logical logs and archiving are described
in the sections beginning on page 3-13 and page 3-43, respectively. Infor-
mation and guidelines for setting the value of shared-memory parameters
are provided in Chapter 1, “Installation and Initial Configuration.” Infor-

mation about performance tuning is provided in Chapter 5, “How to
Improve Performance.”

Create a Blobspace

Use a blobspace to store large volumes of BYTE and TEXT data types. Blobs
stored in a blobspace are written directly to disk. The blob data does not pass
through the shared-memory buffer pool. If it did, the volumes of data could
occupy so many of the buffer-pool pages that other data and index pages
would be forced out.

For the same reason, blobs stored in a blobspace are not written to either the
logical or physical log. The blobspace blobs are logged by writing the blobs
directly from disk to the logical log backup tapes, without ever passing
through the logical log files.

Refer to page 2-78 for further information about writing a blob directly to
disk. Refer to page 4-22 for further information about blobspace logging.

IBM Informix OnLine Database Server Administrator's Guide

Create a Blobspace

Preliminary Considerations

Verify that the DBSPACES value in the configuration file will not be exceeded.
DBSPACES refer to the total number of blobspaces plus dbspaces.

When you create a blobspace, you specify the blobpage size as a multiple of
the machine-page size.

You specify an explicit pathname for the blobspace. Informix recommends
that you use a linked pathname. (Refer to page 1-22 for further information
about the benefits of using linked pathnames. Refer to page 2-93 for further
information about selecting a chunk pathname. Refer to page 1-43 for guide-
lines on how to determine where your chunks should be located on disk.)

If you are allocating a raw disk device for the blobspace, you might need to
specify an offset to preserve track-0 information used by your UNIX
operating system. (Refer to page 1-49 for further information about how to
determine if you need an offset.)

If you are allocating cooked disk space, the pathname is a file in a UNIX file
system.

You can mirror the blobspace when you create it if mirroring is enabled for
OnLine. Mirroring takes effect immediately. (Refer to page 4-14 for further
information about the benefits of chunk mirroring.)

If you are logged in as user informix, you can create a blobspace from within
DB-Monitor or from the command line. If you are logged in as root, you must
use the command-line option.

You can create a blobspace while OnLine is in online mode.

Blobpage size can vary among blobspaces. Blobpage size is a multiple of
OnLine page size (specified as BUFFSIZE in the configuration file). You
specify blobpage size as some number of OnLine pages.

Aim to create a blobpage size that is the size of the most frequently occurring
blob. For example, if you are storing 160 blobs and you expect 120 blobs to be
12 KB and 40 blobs to be 16 KB, a 12-kilobyte blobpage size would store the
blobs most efficiently. If speed is your primary concern, use a 16-kilobyte
blobpage so that every blob can be stored on a single blobpage.

Operating OnLine 3-89

Create a Blobspace

3-90

To continue the example, assume your OnLine page size is 2 KB. If you decide
on a 12-kilobyte blobpage size, specify the blobpage size parameter as 6. If
your OnLine page size is 4 KB, specify the blobpage size parameter as 3. (That
is, the size of the blob rounded up to the nearest kilobyte, divided by the page
size, is equal to the blobpage size parameter.)

If a table has more than one blob column and the blobs are not close in size,
store the blobs in different blobspaces, each with an appropriately sized
blobpage.

A newly created blobspace is not immediately available for blob storage.
Blobspace logging and recovery require that the statement that creates a
blobspace and the statements that insert blobs into that blobspace appear in
separate logical log files. This requirement is true for all blobspaces,
regardless of the logging status of the database.

To accommodate this requirement, execute tbmode -1 to switch to the next
logical log file after you create a blobspace.

From DB-Monitor
1. From within DB-Monitor, select the Dbspaces menu, BLOBSpace
option to create a blobspace.
2. Enter the name of the new blobspace in the BLOBSpace Nane field.

3. Ifyouwant to create a mirror for the initial blobspace chunk, enter a
Yinthe M rror field. Otherwise, enter N.

4. Specify the blobpage size in the BLOBPage Si ze field.

5. Enter the complete pathname for the initial primary chunk of the
blobspace in the Ful | Pat hnane field of the primary chunk section.

6. Specify an offset in the O f set field if it is appropriate for your
device.

7. Enter the size of the chunk, in kilobytes, in the Si ze field.

8. If you are mirroring this blobspace, enter the mirror chunk full
pathname, size, and optional offset in the mirror chunk section of the
screen.

IBM Informix OnLine Database Server Administrator's Guide

Drop a Blobspace

From the Command Line

From the command line, execute the tbspaces utility with the following
options and parameters:

-C creates a new blobspace.
-b blobspace specifies a blobspace name.

-g page_unit specifies the blobpage-size parameter (number of OnLine
pages).

-p pathname specifies the explicit pathname of a primary chunk: either a
raw device or a UNIX file.

-0 offset specifies the raw device offset in kilobytes, if appropriate.

-m indicates blobspace mirroring and is followed by both
pathname and offset, if appropriate, for the blobspace mirror.

All options and parameters except -0 and -m are required. The following
example creates a mirrored blobspace blobsp3 with a blobpage size of 10 KB,
where OnLine page size is 2 KB. An offset of 200 KB for the primary and
mirror chunks is specified.

t bspaces -c -b blobsp3 -g 5 -p /dev/rsdlf -o 200
-m/dev/rsd2a 200

Drop a Blobspace

The blobspace you intend to drop must be unused. (It is not sufficient for the
blobspace to be empty of blobs.) Execute tbcheck -pe to verify that no table
is currently storing data in the blobspace.

After you drop the blobspace, the newly freed chunks are available for
reassignment to other dbspaces or blobspaces.

If you drop a blobspace that is mirrored, you also drop the blobspace mirrors.

If you want to drop only the blobspace mirrors, turn off mirroring. This drops
the blobspace mirrors and frees the chunks for other uses.

Operating OnLine 3-91

Change the Number of Buffers in the Pool

3-92

If you are logged in as user informix, you can drop a blobspace from within
DB-Monitor or from the command line. If you are logged in as root, you must
use the command-line option.

You can drop a blobspace while OnLine is in online mode.

From DB-Monitor

1. From within DB-Monitor, Select the Dbspaces menu, Drop option to
drop a blobspace.

2. Use the RETURN key or Arrow keys to scroll to the blobspace you
want to drop and press CTRL-B or F3. You are asked to confirm that
you want to drop the blobspace.

From the Command Line

From the command line, execute the tbspaces utility with the following
option and parameter:

-d blobspace specifies the blobspace to be dropped.

The following example drops a blobspace blobsp3 and its mirrors:

t bspaces -d bl obsp3

Change the Number of Buffers in the Pool

The number of regular page buffers in the shared-memory pool is specified
as BUFFERS in the configuration file.

You can make this change while OnLine is in online mode, but it will not take
effect until you reinitialize shared memory (take OnLine offline and then to
quiescent or online mode).

The maximum number of buffers is 32,000. The minimum number is four
buffers per user process (USERS).

If you are logged in as user informix, you can make this change from within
DB-Monitor or from the command line. If you are logged in as root, you must
use the command-line option.

IBM Informix OnLine Database Server Administrator's Guide

Change the Size of Either Log Buffer

From DB-Monitor

1. From within DB-Monitor, select the Parameters menu, Shared-
Memory option to change the number of page buffers in the shared-
memory pool. Change the value in the field Max # of Buffers.

2. Reinitialize shared memory (take OnLine offline and then to
quiescent mode) for the change to take effect.

From the Command Line

1. To change the value of BUFFERS from the command line, use an
editor to edit the file specified by $INFORMIXDIR/etc/$TBCONFIG.

2. Change the value of BUFFERS. Reinitialize shared memory (take
OnLine offline and then to quiescent mode) for the change to take
effect.

Change the Size of Either Log Buffer

This section provides instructions for changing the size of either the three
logical log buffers or the two physical log buffers. Refer to page 2-63 for
further information about the physical log buffers. Refer to page 2-66 for
further information about the logical log buffers.

The size of each of the three logical log buffers is specified as LOGBUFF in the
configuration file. The size of each of the two physical log buffers is specified
as PHYSBUFF.

The buffer size is expressed in kilobytes. The recommended value for both
parameters is 16 pages. The minimum value is one page, although small
buffers can create problems if you are storing records that are larger than the
size of the buffers (for example, blobs in dbspaces).

You can make this change while OnLine is in online mode, but it will not take
effect until you reinitialize shared memory (take OnLine offline and then to
quiescent or online mode).

If you are logged in as user informix, you can make this change from within
DB-Monitor or from the command line. If you are logged in as root, you must
use the command-line option.

Operating OnLine 3-93

Add a Chunk

From DB-Monitor

1. From DB-Monitor, select the Parameters menu, Shared-Memory
option to change the size of either the logical log buffer or the
physical log buffer. Change the value in the appropriate field, either
Logical Log Buffer Size or Physical Log Buffer Size.

2. Reinitialize shared memory (take OnLine offline and then to
quiescent mode) for the change to take effect.

From the Command Line

1. To change the value of either LOGBUFF or PHYSBUFF from the
command line, use an editor to edit the file specified by
SINFORMIXDIR/etc/$TBCONFIG.

2. Change the value of either LOGBUFF or PHYSBUFF. Reinitialize
shared memory (take OnLine offline and then to quiescent mode) for
the change to take effect.

Add a Chunk

Add a chunk when you need to increase the amount of disk space allocated
to a blobspace or dbspace.

Preliminary Considerations

Once you add a chunk, you cannot drop it unless you drop the entire
blobspace or dbspace.

Verify that you will not exceed the maximum number of chunks allowed in
your configuration, specified as CHUNKS.

If you are adding a chunk to a mirrored blobspace or dbspace, you must also
add a mirror chunk.

You specify an explicit pathname for the chunk. Informix recommends that
you use a linked pathname. (Refer to page 1-22 for further information about
the benefits of using linked pathnames. Refer to page 2-93 for further infor-
mation about selecting a chunk pathname. Refer to page 1-43 for guidelines
on how to determine where your chunks should be located on disk.)

3-94 IBM Informix OnLine Database Server Administrator's Guide

Add a Chunk

If you are allocating a raw disk device, you might need to specify an offset to
preserve track 0 information used by your UNIX operating system. Refer to
page 1-49 for further information about how to determine if you need an
offset.

If you are allocating cooked disk space, the pathname is a file in a UNIX file
system.

If you are logged in as user informix, you can make this change from within
DB-Monitor or from the command line. If you are logged in as root, you must
use the command-line option.

You can make this change while OnLine is in online mode. The newly added
chunk (and its associated mirror, if there is one) is available immediately.

From DB-Monitor

1. From within DB-Monitor, select the Dbspaces menu, Add_chunk
option to add a chunk.

2. Use the RETURN key or the arrow keys to select the blobspace or
dbspace that will receive the new chunk and press CTRL-B or F3.

The next screen that displays indicates whether the blobspace or
dbspace is mirrored. If it is, you must specify both a primary chunk
and mirror chunk.

3. Enter the complete pathname for the new primary chunkin the Ful |
Pat hnane field of the primary chunk section.

4. Specify an offset in the O f set field if it is appropriate for your
device.

5. Enter the size of the chunk, in kilobytes, in the Si ze field.

6. If you are mirroring this chunk, enter the mirror chunk full
pathname, size, and optional offset in the mirror chunk section of the
screen.

Operating OnLine 3-95

Change the Maximum Number of Chunks

3-96

From the Command Line

From the command line, execute the tbspaces utility with the following
options and parameters:

-a space_name specifies a chunk isto be added. The -a option is followed by
either a blobspace name or a dbspace name, indicating the
space to which the chunk is added.

-p pathname specifies the explicit pathname of a chunk, either a raw
device or a UNIX file.

-0 offset specifies the raw device offset in kilobytes, if appropriate.
-s size specifies the chunk size, in kilobytes.
-m indicates chunk mirroring and is followed by both a

pathname and offset, if appropriate, for the mirror chunk.

All options and parameters except -0 and -m are required. The following
example adds a mirrored chunk to blobsp3. An offset of 200 KB is specified.

t bspaces -a bl obsp3 -p /dev/rsd0d -o 200 -s 100000
-m/dev/rsd8a 200

Change the Maximum Number of Chunks

This section provides instructions for changing the maximum number of
chunks that are permitted by OnLine. The maximum number of chunks is
specified as CHUNKS in the configuration file.

You can make this change while OnLine is in online mode but it will not take
effect until you reinitialize shared memory (take OnLine offline and then to
quiescent or online mode).

The maximum number of chunks that can exist might be system-specific
since it depends on the length of your chunk names or the maximum number
of open files per process. (Refer to page 2-93 for further information about
this limit.)

If you are logged in as user informix, you can make this change from within
DB-Monitor or from the command line. If you are logged in as root, you must
use the command-line option.

IBM Informix OnLine Database Server Administrator's Guide

Create a Dbspace

From DB-Monitor

1. From within DB-Monitor, select the Parameters menu, Shared-
Memory option to change the maximum number of chunks. Change
the value in the field, Max # of Chunks.

2. Reinitialize shared memory (take OnLine offline and then to
quiescent mode) for the change to take effect.

From the Command Line

1. To change the value of CHUNKS from the command line, use an
editor to edit the file specified by $INFORMIXDIR/etc/$TBCONFIG.

2. Change the value of CHUNKS. Reinitialize shared memory (take
OnLine offline and then to quiescent mode) for the change to take
effect.

Create a Dbspace

This section provides instructions for creating a dbspace.

Verify that you will not exceed the maximum number of blobspaces and
dbspaces allowed in your configuration, specified as DBSPACES.

You specify an explicit pathname for the initial chunk of the dbspace.
Informix recommends that you use a linked pathname. (Refer to page 1-22
for further information about the benefits of using linked pathnames. Refer
to page 2-93 for further information about selecting a chunk pathname. Refer
to page 1-43 for guidelines on how to determine where your chunks should
be located on disk.)

If you are allocating a raw disk device, you might need to specify an offset to
preserve track 0 information used by your UNIX operating system. (Refer to
page 1-49 for further information about how to determine if you need an
offset.)

If you are allocating cooked disk space, the pathname is a file in a UNIX file
system.

If you are logged in as user informix, you can create a dbspace within
DB-Monitor or from the command line. If you are logged in as root, you must
use the command-line option.

Operating OnLine 3-97

Create a Dbspace

3-98

You can
dbspace

1.

-C

-0 offset

-m

create a dbspace while OnLine is in online mode. The newly added
(and its associated mirror, if there is one) is available immediately.

From DB-Monitor

From within DB-Monitor, select the Dbspaces menu, Create option to
create a dbspace.

Enter the name of the new dbspace in the field Dospace Nane.

If you want to create a mirror for the initial dbspace chunk, enter a 'y
inthe M rror field. Otherwise, enter N.

Enter the complete pathname for the initial primary chunk of the
dbspace in the Ful | Pat hname field of the primary chunk section.

Specify an offset in the O f set field if it is appropriate for your
device.

Enter the size of the chunk, in kilobytes, in the Si ze field.

If you are mirroring this dbspace, enter the mirror chunk full
pathname, size, and optional offset in the mirror chunk section of the
screen.

From the Command Line

From the command line, execute the tbspaces utility with the following
options and parameters:

creates a new dbspace.

-d dbspace specifies a dbspace name.

-p pathname specifies the explicit pathname of the primary chunk, either a

raw device or a UNIX file.
specifies the raw device offset in kilobytes, if appropriate.

indicates dbspace mirroring and is followed by both pathname
and offset, if appropriate, for the dbspace mirror.

IBM Informix OnLine Database Server Administrator's Guide

Drop a Dbspace

All options and parameters except -0 and -m are required. The following
example creates a mirrored dbspace dbspce5. An offset of 5,000 KB is
specified.

tbspaces -c -d dbspce5 -p /dev/rsdilf -o 5000
-m/dev/rsd2a 5000

Drop a Dbspace

The dbspace you intend to drop must be unused. (It is not sufficient for the
dbspace to be empty of data.) Execute tbcheck -pe to verify that no tables or
logs are residing in the dbspace.

Preliminary Considerations
You cannot drop the root dbspace.

After you drop a dbspace, the newly freed chunks are available for
reassignment to other dbspaces or blobspaces.

If you drop a dbspace that is mirrored, you also drop the dbspace mirrors.

If you want to drop only the dbspace mirrors, turn off mirroring. This drops
the dbspace mirrors and frees the chunks for other uses.

If you are logged in as user informix, you can drop the dbspace from within
DB-Monitor or from the command line. If you are logged in as root, you must
use the command-line option.

You can drop a dbspace while OnLine is in online mode.

From DB-Monitor
1. From within DB-Monitor, select the Dbspaces menu, Drop option to
drop a dbspace.

2. Usethe RETURN key or arrow keys to scroll to the dbspace you want
to drop and press CTRL-B or F3. You are asked to confirm that you
want to drop the dbspace.

Operating OnLine 3-99

Enforce/Turn Off Residency for This Session

3-100

From the Command Line

From the command line, execute the tbspaces utility with the following
option and parameter;

-d dbspace specifies the dbspace to be dropped

The following example drops a dbspace dbspce5 and its mirrors:

t bspaces -d dbspce5

Enforce/Turn Off Residency for This Session

This change takes effect immediately, but it does not change the values in the
configuration file. If you want to change the configuration file, refer to
page 3-100.

If you are logged in as user informix or root, you can make this change from
the command line. This option is not available from within DB-Monitor.

You can make this change while OnLine is in online mode.

To immediately enforce residency of shared memory, execute tbmode -r. This
enforces shared-memory residency without affecting the value of the config-
uration file parameter RESIDENT.

To immediately end forced residency of shared memory, execute tbmode -n.
This ends residency without affecting the value of RESIDENT.

Enforce/Turn Off Residency

This change does not take effect until you reinitialize shared memory. If you
want the new setting to take effect immediately, refer to page 3-100.

The values that you specify for the RESIDENT parameter depend on whether
you are making the change through DB-Monitor or by editing the configu-
ration file.

You can make this change while OnLine is in online mode, but it will not take
effect until you reinitialize shared memory (take OnLine offline and then to
quiescent or online mode).

IBM Informix OnLine Database Server Administrator's Guide

Change the Status of a Mirrored Chunk

If you are logged in as user informix, you can create a dbspace within
DB-Monitor or from the command line. If you are logged in as root, you must
use the command-line option.

From DB-Monitor

1. From within DB-Monitor, select the Parameters menu, Shared-
Memory option to change the shared-memory residency setting. A
value of Y enforces shared memory, and a value of N permits all or
part of shared memory to be swapped to disk. Change the value in
the field, For ced Resi dency, to either Y or N.

2. Reinitialize shared memory (take OnLine offline and then to
quiescent mode) for the change to take effect.

From the Command Line

1. To change the value of RESIDENT from the command line, use an
editor to edit the file specified by $INFORMIXDIR/etc/$STBCONFIG. A
value of 1 enforces shared memory and a value of 0 permits all or
part of shared memory to be swapped to disk.

2. Change the value of RESIDENT to either 1 or 0. Reinitialize shared
memory (take OnLine offline and then to quiescent mode) for the
change to take effect.

Change the Status of a Mirrored Chunk

Two status changes are possible:

= Change a mirrored chunk from online to down
= Change a mirrored chunk from down to recovery

The status of a chunk is described by a combination of flags.

You can take down or restore a chunk only if it is part of a mirrored pair. You
can take down or restore either the primary chunk or the mirror chunk, as
long as the other chunk in the pair is online.

Operating OnLine 3-101

Change the Status of a Mirrored Chunk

When you initiate recovery for a “down’ mirrored chunk, a daemon process
begins copying the contents of the primary chunk to the chunk being
recovered. OnLine brings the chunk online if the recovery is successful. The
recovery status (R) is transitional.

If you are logged in as user informix, you can change the status of a mirrored
chunk from within DB-Monitor or from the command line. If you are logged
in as root, you must use the command-line options.

You can make this change while OnLine is in online mode.

The following table defines the eight OnLine chunk status flags:

Flag Description

- Chunk belongs to a dbspace.

Chunk belongs to a blobspace.

Chunk is down, no reads or writes can occur.
Mirror chunk.

Chunk is online.

Primary chunk.

Chunk is currently being recovered.

X ™ TV O Z U W

New mirror chunk that contains logical log files; a level-0 archive is
needed before the mirror can become active.

3-102 IBM Informix OnLine Database Server Administrator's Guide

Change the Status of a Mirrored Chunk

From DB-Monitor

1.

From within DB-Monitor, select the Dbspaces menu, Status option to
change the status of a mirrored chunk.

Use the RETURN bar or the arrow keys to select the dbspace or
blobspace that contains the chunk whose status you wish to change.
Press CTRL-B or F3. The chunks screen displays all chunks assigned
to the selected blobspace or dbspace.

Use the RETURN key or the arrow keys to select the chunk whose
status you wish to change. If you select a chunk with online status,
OnLine takes the chunk down. If you select a chunk with down
status, OnLine initiates recovery. You are asked to confirm your
decision if you choose to bring down a chunk with online status.

From the Command Line

From the command line, execute the tbspaces utility with the following
options and parameters:

-s space_name changes the status of a chunk. The -s option is followed by the

name of the blobspace or dbspace to which the chunk belongs.

-p pathname specifies the explicit pathname of the chunk: either a raw

device or a UNIX file.

-0 offset specifies the raw device offset in kilobytes, if appropriate.

-O

-D

restores the specified down chunk and, after recovery, brings
the chunk online.

takes the specified online chunk down.

The -o option and parameter are optional. Specify either the -O or the -D
option but not both. If you select the -O option for a chunk that is already
online, or if you select the -D option for a chunk that is already down, the
command executes, but no change occurs.

The following example takes down a chunk that is part of the dbspace
db_acct:

t bspaces -s db_acct -p /dev/rsdlb -o 300 -D

Operating OnLine 3-103

Enable Mirroring

Enable Mirroring

Mirroring activity does not begin until you define mirror chunks for a
dbspace or a blobspace and explicitly start mirroring. Do not enable
mirroring until you are ready to define the mirror chunks.

Mirroring is enabled when the value of the MIRROR shared-memory config-
uration parameter is set to 1.

You can change the value of MIRROR while OnLine is in online mode but it
will not take effect until you reinitialize shared memory (take OnLine offline
and then to quiescent or online mode).

If you are logged in as user informix, you can make this change from within
DB-Monitor or from the command line. If you are logged in as root, you must
use the command-line option.

If you make the change from within DB-Monitor, you risk inadvertently reini-
tializing OnLine and destroying all data. This risk is present because you
access the MIRROR parameter through the Initialize option of the Parameters
menu.

From DB-Monitor

1. From within DB-Monitor, select the Parameters menu, Initialize
option to enable mirroring. In the field labelled M rror, enter a .
Press ESC to record changes.

2. Whenthe screen of shared-memory parameters appears, press ESC to
save the rest of your configuration without changes.

3. When the prompt appears to confirm that you want to save the
changes to your configuration, respond Y (yes).

4. Whenasecond prompt appears to confirm that you want to continue
(to initialize OnLine disk space and destroy all existing data),
respond N (no).

5. Reinitialize shared memory (take OnLine offline and then to
quiescent mode) for the change to take effect.

3-104 IBM Informix OnLine Database Server Administrator's Guide

Start/End Mirroring in a Blobspace or Dbspace

From the Command Line

1. From the command line, change the value of MIRROR to 1. To do this
from the command line, use an editor to edit the file specified by
SINFORMIXDIR/etc/$TBCONFIG.

2. Change the value of MIRROR to 1. Reinitialize shared memory (take
OnLine offline and then to quiescent mode) for the change to take
effect.

Start/End Mirroring in a Blobspace or Dbspace

This section provides instructions for the following topics:

= Starting mirroring in an existing blobspace or dbspace
= Ending mirroring in an OnLine blobspace or dbspace

Preliminary Considerations

Verify that the value of MIRROR is set to 1 to enable mirroring. If mirroring is
not enabled, you cannot access the DB-Monitor menu required for either of
these tasks.

You must use DB-Monitor to start or end mirroring. Only user informix can
initiate this action. You can make these changes while OnLine is in online
mode.

Start Mirroring

You can create a mirror chunk in either raw or cooked disk space. 1/0 writes
to mirrors created in cooked disk space exhibit the slowness that is a charac-
teristic of any cooked disk space.

Use the UNIX link command (In) to link the actual device names of the mirror
chunks to linked pathnames. In the event of disk failure, you can link a new
device to the pathname. You eliminate the need to physically replace the
device that failed before the chunk is brought back online.

To start mirroring through DB-Monitor, you must provide a pathname for
each mirror chunk. Specify the linked pathnames, not the actual device
names.

Operating OnLine 3-105

Start/End Mirroring in a Blobspace or Dbspace

3-106

Create the mirror chunk on a separate device from the primary chunk.
Ideally, the mirror chunk device should be managed by a different controller
than the controller that manages the primary chunk.

Mirroring begins immediately unless the chunk contains a logical log file. If
this is the case, mirroring begins in this chunk as soon as you create a level-0
archive.

You cannot start mirroring in a dbspace that contains a logical log file while
a level-0 archive is in progress.

End Mirroring

When you end mirroring, all mirror chunks are released. These chunks are
immediately available for reassignment to other blobspaces or dbspaces.

You cannot end mirroring in a blobspace or dbspace that contains a primary
chunk that is down (status D).

Blobspaces and dbspaces can be described by their mirroring flags:

Flag Description

Y Blobspace or dbspace is mirrored.

N Blobspace or dbspace is not mirrored.

X Dbspace contains a logical log; mirroring takes effect as soon as you

create a level-0 archive.

A mirroring flag for every OnLine blobspace and dbspace is displayed on the
first screen that appears when you select the Dbspaces menu, Mirror option.
An asterisk to the right of the M r r or field indicates that one or more chunks
in the blobspace or dbspace is down.

IBM Informix OnLine Database Server Administrator's Guide

Change Physical Log Location or Size

To start or end mirroring

1. Select the Dbspaces menu, Mirror option.

Every OnLine blobspace and dbspace is listed. You can start mirror-
ing for spaces with a status of N. You can end mirroring for spaces
with a status of Y.

2. Use the RETURN key or the arrow keys to select a blobspace or
dbspace. Press CTRL-B or F3.

If the current status is Y, DB-Monitor ends mirroring and releases the
mirror chunks.

If the current status is N, DB-Monitor prompts you for the full path-
name location, offset, and size of each mirror chunk.

Informix recommends that you use a linked pathname. (Refer to
page 1-22 for further information about the benefits of using linked
pathnames. Refer to page 1-43 for guidelines on how to determine
where your chunks should be located on disk.)

3. Specify an offset in the O f set field if it is appropriate for your
device. (Refer to page 1-49 for further information about how to
determine if you need an offset.)

4. Enter the size of the chunk, in kilobytes, in the Si ze field.

Change Physical Log Location or Size

The size of the physical log is specified as PHYSFILE in the configuration file.
The dbspace location of the physical log is specified as PHYSDBS.

You can move the physical log file to try to improve performance. When
OnLine disk space is initialized, the disk pages allocated for the logical log
and the physical log are always located in the root dbspace. After OnLine is
initialized, you might be able to improve performance by physically
separating the physical log and the logical log and placing them on disks that
are not shared by active tables.

The space allocated for the physical log must be contiguous. If you move the
log to a dbspace without adequate contiguous space or increase the log size
beyond the available contiguous space, a fatal shared-memory error occurs
when you attempt to reinitialize shared memory with the new values.

Specify the size of the physical log in kilobytes.

Operating OnLine 3-107

Change Physical Log Location or Size

3-108

1.

Create a level-0 archive immediately after you reinitialize shared memory.
This archive is critical for OnLine recovery.

You can change the value of PHYSFILE or PHYSDBS while OnLine is in online
mode, but the changes do not take effect until you reinitialize shared memory
(take OnLine offline and then to quiescent or online mode). If you use the
command-line option, you reinitialize shared memory in the same step.

If you are logged in as user informix, you can change the size or location of
the physical log from within DB-Monitor or from the command line. If you are
logged in as root, you must use the command-line option.

From DB-Monitor

From within DB-Monitor, select the Parameters menu, Physical-Log
option to change the size or dbspace location, or both.

The Physi cal Log Si ze field displays the current size of the log.
Enter the new size (in kilobytes) if you want to change the size of the
log.

The Dospace Nane field displays the current location of the physical
log. Enter the name of the new dbspace if you want to change the log
location.

You are prompted, first, to confirm the changes and, second, if you
want to shut down the system. This last message refers to reinitial-
izing shared memory. If you respond Y, DB-Monitor reinitializes
shared memory and any changes are implemented immediately. If
you respond N, the values are changed in the configuration file but
do not take effect until you reinitialize shared memory.

If you reinitialize shared memory, create a level-0 archive immedi-
ately to ensure that all recovery mechanisms are available.

IBM Informix OnLine Database Server Administrator's Guide

Change the Checkpoint Interval

From the Command Line

From the command line, execute the tbparams utility with the following
options and parameters:

-p changes the physical log.
-S size specifies the size of the physical log in kilobytes.
-d dbspace specifies the dbspace where the physical log resides.

-y initializes shared memory immediately.

Only the -p option is required. The following example changes the size and
location of the physical log and reinitializes shared memory so the change
takes effect immediately:

tbparams -p -s 400 -d dbspace5 -y

If you reinitialize shared memory, create a level-0 archive to ensure that all
recovery mechanisms are available.

Change the Checkpoint Interval

This section provides instructions for changing the checkpoint interval. The
checkpoint interval is specified by CKPTINTVL in the configuration file.

The checkpoint interval is not necessarily the amount of time between check-
points. The interval describes the maximum amount of time that can elapse
before OnLine checks to determine if a checkpoint is needed. If no changes
have been made to OnLine data, the checkpoint check is recorded but the
checkpoint is not performed.

The value of CKPTINTVL is expressed in seconds. The default value is 300
seconds or five minutes.

You can make this change while OnLine is in online mode, but the changes
do not take effect until you reinitialize shared memory (take OnLine offline
and then to quiescent or online mode).

If you are logged in as user informix or root, you can make this change from
the command line. You cannot make this change from within DB-Monitor.

Operating OnLine 3-109

Change the Destination of Console Messages

3-110

To change the value of CKPTINTVL from the command line, use an editor to
edit the file specified by $INFORMIXDIR/etc/$TBCONFIG.

Change the value of CKPTINTVL. Reinitialize shared memory (take OnLine
offline and then to quiescent mode) for the change to take effect.

Change the Destination of Console Messages

The destination pathname is specified as CONSOLE in the configuration file.

You can make this change while OnLine is in online mode, but the changes
will not take effect until you reinitialize shared memory (take OnLine offline
and then to quiescent or online mode).

You specify an explicit pathname for the message destination. The default
destination is /dev/console.

If you are logged in as user informix, you can make this change from within
DB-Monitor or from the command line. If you are logged in as root, you must
use the command-line option.

If you make the change from within DB-Monitor, you risk inadvertently reini-
tializing OnLine and destroying all data. This risk is present because the
CONSOLE parameter is accessed through the Initialize option of the Param-
eters menu.

From DB-Monitor

1. From within DB-Monitor, select the Parameters menu, Initialize
option to change the console message destination. In the field
labelled Syst em Msgs. , enter the pathname. Press ESC to record
changes.

2. Whenthe screen of shared-memory parameters appears, press ESC to
save the rest of your configuration without changes.

3. When the prompt appears to confirm that you want to save the
changes to your configuration, respond Y (yes).

IBM Informix OnLine Database Server Administrator's Guide

Change the Maximum Number of Dbspaces

4. Whenasecond prompt appears to confirm that you want to continue
(to initialize OnLine disk space and destroy all existing data),
respond N (no).

5. Reinitialize shared memory (take OnLine offline and then to
quiescent mode) for the change to take effect.

From the Command Line

1. To change the value of CONSOLE from the command line, use an
editor to edit the file specified by $INFORMIXDIR/etc/$TBCONFIG.

2. Change the value of CONSOLE. Reinitialize shared memory (take
OnLine offline and then to quiescent mode) for the change to take
effect.

Change the Maximum Number of Dbspaces

The maximum number of blobspaces and dbspaces is specified as DBSPACES
in the configuration file.

You can make this change while OnLine is in online mode but the change
does not take effect until you reinitialize shared memory (take OnLine offline
and then to quiescent or online mode).

The maximum number of dbspaces depends on the maximum number of
chunks, CHUNKS, since every dbspace must be composed of at least one
chunk. Refer to page 2-93 for further information about this limit.

If you are logged in as user informix, you can make this change from within
DB-Monitor or from the command line. If you are logged in as root, you must
use the command-line option.

From DB-Monitor

1. From within DB-Monitor, select the Parameters menu, Shared-
Memory option to change the maximum number of dbspaces.
Change the value in the field, Max # of Dbspaces.

2. Reinitialize shared memory (take OnLine offline and then to
guiescent mode) for the change to take effect.

Operating OnLine 3-111

Change the Maximum Number of Locks

From the Command Line

1. Tochange the value of DBSPACES from the command line, use an
editor to edit the file specified by $INFORMIXDIR/etc/$TBCONFIG.

2. Change the value of DBSPACES. Reinitialize shared memory (take
OnLine offline and then to quiescent mode) for the change to take
effect.

Change the Maximum Number of Locks

The maximum number of available locks is specified as LOCKS in the config-
uration file.

You can make this change while OnLine is in online mode but the changes
will not take effect until you reinitialize shared memory (take OnLine offline
and then to quiescent or online mode).

The maximum number of locks is 256,000. The minimum is 20 locks per user
process (USERS).

If you are logged in as user informix, you can make this change from within
DB-Monitor or from the command line. If you are logged in as root, you must
use the command-line option.

From DB-Monitor

1. From within DB-Monitor, select the Parameters menu, Shared-
Memory option to change the maximum number of locks. Change
the value in the field, Max # of Locks.

2. Reinitialize shared memory (take OnLine offline and then to
quiescent mode) for the change to take effect.

From the Command Line

1. To change the value of LOCKS from the command line, use an editor
to edit the file specified by $INFORMIXDIR/etc/$TBCONFIG.

2. Change the value of LOCKS. Reinitialize shared memory (take
OnLine offline and then to quiescent mode) for the change to take
effect.

3-112 IBM Informix OnLine Database Server Administrator's Guide

Change the Maximum Number of Thlspaces

Change the Maximum Number of Tblspaces

The maximum number of active tbilspaces permitted by OnLine is specified
as TBLSPACES in the configuration file.

You can make this change while OnLine is in online mode but the change
does not take effect until you reinitialize shared memory (take OnLine offline
and then to quiescent or online mode).

The maximum number of tblspaces is 32,000. The minimum is 10 per user
process (USERS). This minimum also must be greater than the maximum
number of tables in any one database, including the system catalog tables,
plus 2. (This minimum is required to permit OnLine to execute a DROP
DATABASE statement.)

Refer to page 2-52 for further information about this limit.

If you are logged in as user informix, you can make this change from within
DB-Monitor or from the command line. If you are logged in as root, you must
use the command-line option.

From DB-Monitor

1. From within DB-Monitor, select the Parameters menu, Shared-
Memory option to change the maximum number of dbspaces.
Change the value in the field, Max # of Tbl spaces.

2. Reinitialize shared memory (take OnLine offline and then to
quiescent mode) for the change to take effect.

From the Command Line
1. To change the value of TBLSPACES from the command line, use an
editor to edit the file specified by $INFORMIXDIR/etc/$TBCONFIG.

2. Change the value of TBLSPACES. Reinitialize shared memory (take
OnLine offline and then to quiescent mode) for the change to take
effect.

Operating OnLine 3-113

Change the Maximum Number of Users

3-114

Change the Maximum Number of Users

Users, in this context, refers to the maximum number of processes that attach
to shared memory. User processes include database server processes,
daemon processes, and utility processes. This value is specified as USERS in
the configuration file.

You can make this change while OnLine is in online mode but the change
does not take effect until you reinitialize shared memory (take OnLine offline
and then to quiescent or online mode).

The maximum number of user processes that can concurrently attach to
shared memory is 1,000. The minimum value for USERS is the number of page
cleaners (specified as CLEANERS) plus 4, plus 1 if mirroring is enabled. The
four user processes that must be accommodated are thinit, the master
daemon; tbundo, the undertaker daemon; tomonitor, a utility process that
executes DB-Monitor; and one database server process to execute adminis-
trative tasks.

The minimum shared-memory values for LOCKS, BUFFERS, and TBLSPACES
all depend on the value of USERS. Ensure that the change you make to the
value of USER does not violate the minimum requirements for these three
values. If the value for LOCKS, BUFFERS, or TBLSPACES is less than the
acceptable minimum, you must change it as well.

If you are logged in as user informix, you can make this change from within
DB-Monitor or from the command line. If you are logged in as root, you must
use the command-line option.

From DB-Monitor

1. From within DB-Monitor, select the Parameters menu, Shared-
Memory option to change the maximum number of dbspaces.
Change the value in the field, Max # of Users.

2. Change the value of the LOCKS, BUFFERS, or TBLSPACES parameter
to match the new number of users, if required.

3. Reinitialize shared memory (take OnLine offline and then to
quiescent mode) for the change to take effect.

IBM Informix OnLine Database Server Administrator's Guide

Change the Number of Page Cleaners

From the Command Line

1. Tochange the value of USERS from the command line, use an editor
to edit the file specified by $INFORMIXDIR/etc/$TBCONFIG.

2. Change the value of USERS. Change the value of the LOCKS,
BUFFERS, or TBLSPACES parameter to match the new number of
users, if required.

3. Reinitialize shared memory (take OnLine offline and then to
guiescent mode) for the change to take effect.

Change the Number of Page Cleaners

The number of page cleaners is specified as CLEANERS in the configuration
file.

You can make this change while OnLine is in online mode, but the changes
will not take effect until you reinitialize shared memory (take OnLine offline
and then to quiescent or online mode).

If you are logged in as user informix, you can make this change from within
DB-Monitor or from the command line. If you are logged in as root, you must
use the command-line option.

Refer to page 5-17 for guidelines for setting this value to improve
performance.

From DB-Monitor

1. From within DB-Monitor, select the Parameters menu, Shared-
Memory option to change the maximum number of page cleaners.
Change the value in the field, Nunber of Page C eaners.

2. Reinitialize shared memory (take OnLine offline and then to
guiescent mode) for the change to take effect.

Operating OnLine 3-115

Things to Avoid

3-116

From the Command Line

1. Tochange the value of CLEANERS from the command line, use an
editor to edit the file specified by $INFORMIXDIR/etc/$TBCONFIG.
2. Change the value of CLEANERS. Reinitialize shared memory (take
OnLine offline and then to quiescent mode) for the change to take
effect.
Things to Avoid

Here are some ideas that might sound good in theory, but have unexpected
consequences that could adversely affect your OnLine performance. Below is
a list of things to avoid:

Never kill an OnLine database server process during database
activity. Check that the server process is not holding a latch and is not
in a critical section. Use tbmode -z to end a database server process.
Refer to page 2-32.

Avoid transactions that span a significant percentage of available
logical log space.

Do not define your archive tape device (TAPEDEV) as a named pipe.

Do not rely on dbexport (a utility that creates a copy of your database
for migrating) as an alternative to creating routine archives.

Do not run utilities that send output to tape in background mode
(using the & operator).

Do not switch the logical log tape device between a tape device and
/dev/null while the logical log files are in use.

IBM Informix OnLine Database Server Administrator's Guide

Data Consistency, Recovery,
and Migration

InThisChapter . 45

Consistency Checking. . . e 4-6
Using the tbcheck Commands C e 4-6
tbcheck-cr o oo 0L 4-7
tbcheck-cc o 0oL 0L 4-7
tbcheck-ce 0oL 4-7
tbcheck-cl o .00 L0 4-8
tbcheck -cD. . . e 4-8
Using the OnLine Message Log e 4-8
Setting Consistency-Checking Variables 4-9
GCORE 41
DUMPCORE 41
DUMPSHMEM 41
DUMPDIR Y P
Recovering from Corruptlon S)

Mirroring .. 414
Beginning. 415

Processing . 416
Recovery AL
Ending. L L. L. 41T

OnLine Logging Overview 418
Dbspace Logging 419
Blobspace Logging 422

Operations Logging. 424
Operations Rollback. 424
Blob Restoration 425

What Happens During Logical Log Backup Coe 426

Ready LTAPEDEV. T S
Locate the Next LogicalLog 427
CopyBlobpages 427
Place Log HeaderonTape 428
Write Log RecordstoTape 429
Write TrailerPage 430
What Happens During an Archive 430
Read Archive History Information 431
Mounta Tapeon TAPEDEV 431
Verify the ArchiveLevel. 432
Check Free Space in the Logical Log. 432
Force a Checkpoint Y Y
Purpose of Checkpoint Tlmestamp Y A K
Purpose of Data Snapshot 433
Synchronize tbtape and tbinit Activities 4-33
Archive DiskPages 434
Archiveblobpages 435
Write Tape HeaderPage. 435
Archive ReservedPages. 436
Determine Archive Criteria. . . . 1%
Archive Disk Pages That Meet Crlterla 438
Monitor and Archive Physical LogPages 4-38
Write a TrailerPage 438
Update the Reserved Pages. 438
Fast Recovery. . . - S 1Y)
How Does OnLine Inltlate Fast Recovery’7 - S 1Y)
Fast Recovery and Logging. 440
Step 1: Checkpoint Condition gy
Step 2: Find Checkpoint Record in Loglcal Log R R
Step 3: Roll Forward Log Records 443
Step 4: Roll Back Incomplete Transactions. 444
Data Restore: When Should YouDo It? 445
Steps That Occur Duringa DataRestore 4-45
Gather All Tapes Needed for Restore 447
Verify OnLine Configuration 4-48

4-2 IBM Informix OnLine Database Server Administrator's Guide

Initiate Data Restore from OfflineMode 4-49

Mount Level-0 Archive Tape. 449
Verify Current Configuration 450
Prompt for Logical LogBackup. 450
Write Each Archive PagetoDisk 451
Initialize Shared Memory 451
Roll Forward Logical Logs 451
OnLine IsQuiescent.4b52
Database and Table Migration. . . Y R 4
Description of Migration Methods]
UNLOAD/dbschema/LOAD 454
UNLOAD/dbschema/dbload 454
dbexport/dbimport 455
tbunload/tbload 455
Which Migration Method Is Best for You7 e S Y4
Using UNLOAD with LOADordbload 4-60
Create and Edit the SchemaFileFirst 461
Verify Adequate Disk SpaceforData 461
Move Files. . . . T
Create the New Database or Tables RN !
Use LOAD or dbload to Populate the Tables 4-62
Using dbexport and dbimport 4-62
Using tbunload and tbload 4-63
tbunload .464
tbload . . . A oy
Migrating Data from OnLlne to SE Coe 465
Migrating Data from SE to OnLine. 4-66

Data Consistency, Recovery, and Migration ~ 4-3

4-4 IBM Informix OnLine Database Server Administrator's Guide

In This Chapter

Several OnLine tasks that are critical to long-term operation are performed
automatically. As administrator, you might find it interesting and helpful to
understand what these tasks are and why they are important.

Consistency-checking code has been implemented throughout the OnLine
product to help alert administrators to occurrences of data inconsistency. The
function of the code is, at minimum, to write messages to the OnLine
message log if inconsistencies are detected. Administrators can also ask users
to set consistency-checking environment variables that will direct OnLine to
generate diagnostic output if inconsistencies are detected.

Several OnLine features provide for data recovery. This chapter explains how
each feature works, both independently and with other features, to preserve
and restore data in the event of operating system or media failure.

This chapter compares four migration methods to help you select the best
migration method for the task. Following the comparison of the migration
methods, each method is explained step-by-step.

Data Consistency, Recovery, and Migration 4-5

Consistency Checking

4-6

Consistency Checking

OnLine 5 contains a page-level layer of checks that can detect data inconsis-
tencies that might be caused by hardware or operating system errors or by
unknown problems associated with OnLine operation. Associated with this
consistency checking are four environment variables that, if set, collect
diagnostic information that can be useful for IBM Informix technical support
staff. (Descriptions of the four environment variables start on page 4-9.)

Using the tbcheck Commands

To gain the maximum benefit from consistency checking and to ensure the
integrity of archives, periodically verify that all data and OnLine control
information is consistent. Because of the time needed for this check and the
possible contentions that the checks cause, schedule this check for times
when activity is at its lowest. Informix recommends that you perform this
check just prior to creating a level-0 archive.

The commands you should run as part of the check are listed here and
described in the paragraphs that follow:

= tbcheck -cr

= tbcheck -cc

= tbcheck -ce

= tbcheck -cl dbname

= tbcheck -cD dbname
You can run each of these commands while OnLine is in online mode. The
tbcheck commands that include a database lock each table in the database for

the duration of the check. The tbcheck -cl and -cD commands lock each table
as the table is checked, denying access to all other database server processes.

IBM Informix OnLine Database Server Administrator's Guide

Using the tbcheck Commands

tbcheck -cr

Execute thcheck -cr to validate the OnLine reserved pages that reside at the
beginning of the initial chunk of the root dbspace. These pages contain the
primary OnLine control information. If this command detects errors (not
warnings), perform a data restore from archive. (Refer to page 2-95 for more
details about the reserved pages.)

tbcheck -cc

Execute tbcheck -cc to validate the system catalog for each of the databases
that OnLine manages. Each database contains its own system catalog, which
contains information on the database tables, columns, indexes, views,
constraints, stored procedures, and privileges.

If a warning appears after you execute thcheck -cc, its only purpose is to alert
you that no records of a specific type were found. These warnings do not
indicate any problem with your data, your system catalog, or even with your
database design. For example, the following warning might appear if you
execute thcheck -cc on a database that has no synonym names defined for
any table:

WARNI NG No syssyntabl e records found.

This message indicates only that no synonym exists for any table; that is, the
system catalog contains no syssyntable records.

However, if an error message is returned from tbcheck -cc, the situation is
quite different. To correct the situation, you must perform a data restore from
archive.

tbcheck -ce

Execute tbcheck -ce to validate the extents in every OnLine database. It is
important that extents do not overlap. If this command detects errors,
perform a data restore from archive.

Data Consistency, Recovery, and Migration ~ 4-7

Using the OnLine Message Log

4-8

thcheck -cl

Execute tbcheck -cl for each database to validate indexes on each of the tables
in the database. This command locks each table as the table is checked,
denying access to all other database server processes. If thiscommand detects
errors, drop and re-create the affected index.

tbcheck -cD

Execute tbcheck -cD to validate the pages for each of the tables in the
database. This command locks each table as the table is checked, denying
access to all other database server processes. If this command detects errors,
try to unload the data from the specified table, drop the table, re-create the
table, and reload the data. If this does not succeed, perform a data restore
from archive.

After you perform the checks just described and you validate OnLine, create
a level-0 archive. Retain this archive and all subsequent logical log backup
tapes until you complete the next consistency check. Informix recommends
that you perform the consistency checks before every level-0 archive.
However, if you do not, at least keep all the tapes necessary to recover from
the archive that was created immediately after OnLine was verified to be
consistent.

Using the OnLine Message Log

If the consistency-checking code detects an inconsistency during OnLine
operation, messages are sent to the OnLine message log (specified as
MSGPATH in the configuration file; default value is SINFORMIXDIR/
online.log).

Many of the messages sent to the OnLine message log take the following
form:

Fail Consistency Check -- probl emtext pid=process# user=user#
us=addr ess

IBM Informix OnLine Database Server Administrator's Guide

Setting Consistency-Checking Variables

The problem text briefly describes the type of consistency error. The process#
identifies the OnLine database server process identification number (pid) that
encountered the error. The user# is the user identification number as defined
in the UNIX /etc/passwd file. The address is the address of the database server
process in shared memory. Locate the user login and try to discover the
operation being performed at the time of the error. This information might be
valuable for diagnostic purposes.

Most of the general consistency-checking messages are followed by
additional information that usually includes the tblspace where the error was
detected. If this information is available, run tbcheck -cD on the database or
table. If this check verifies the inconsistency, unload the data from the table,
drop the table, re-create the table, and reload the data. Otherwise, no other
action is needed.

A message is also sent to the application process. The content of the message
depends on the operation in progress. However in all cases the following
ISAM error is returned:

-105 ISAM error: bad isamfile fornat

Tip: Chapter 8, which describes the messages that might appear in the OnLine
message log, provides additional details about the objectives and contents of consis-
tency-checking messages.

Setting Consistency-Checking Variables

OnLine recognizes four variables in the user’s environment, which, when set,
direct OnLine to preserve diagnostic information whenever an inconsistency
is detected or whenever OnLine enters into an abort sequence. To take effect,
the variables must be set at the time that the user’s OnLine database server

process is started.

You decide whether your users set these variables. Diagnostic output can
consume a large amount of disk space. (The exact content depends on the
environment variables set and your UNIX system.) The elements of the
output could include a copy of shared memory and/or a core dump of the
database server process.

Data Consistency, Recovery, and Migration 4-9

Setting Consistency-Checking Variables

(A core dump is an image of the database server process in memory at the time
that the inconsistency was detected. Some core dumps include a copy of
shared memory. To determine the size of your OnLine shared memory, refer
to the kilobyte information listed in any tbstat header.)

Administrators with disk space constraints might prefer to write a script that
detects the presence of diagnostic output in a specified directory and sends
the output to tape. This approach preserves the diagnostic information and
minimizes the amount of disk space used.

GCORE

The GCORE environment variable is used with UNIX operating systems that
support the gcore utility. If GCORE is set, the OnLine database server process
calls gcore whenever the server process detects an inconsistency or initiates
an abort sequence. The gcore utility directs the server process to dump core
to the current directory (or the directory specified by DUMPDIR) and continue
processing.

The core dump output generated by gcore is saved to the file core.pid.cnt.
The pid value is the OnLine database server process identification number.
The cnt value is incremented each time this process encounters an inconsis-
tency. The cnt value can range from 1 to 4. After 4, separate core dumps are
saved to files, and no more files are created. If the server process continues to
detect inconsistencies in this section of code, errors are reported to the
OnLine message log (and perhaps to the application), but no further
diagnostic information is saved.

If you set GCORE and your UNIX system does not support gcore, messages in
the OnLine message log indicate that an attempt was made to dump core, but
the expected file was not found. (If your UNIX system does not support gcore,
set DUMPCORE instead.)

Set the GCORE environment variable at the system prompt or in your .login
or .cshrc (C shell) or your .profile (Bourne shell) file as follows:

C shell: set env GCORE

Bourne shell: GCORE =
export GCORE

4-10 IBM Informix OnLine Database Server Administrator's Guide

Setting Consistency-Checking Variables

DUMPCORE

Set the DUMPCORE environmental variable as an alternative to GCORE for
systems that do not support the gcore utility. DUMPCORE directs each
OnLine database server process to dump core when it detects an inconsis-
tency or initiates an abort sequence. To accomplish this, the server process
sends itself a segmentation violation signal. The result, which is a terminated
process that requires cleanup by an OnLine daemon process, is less elegant
than the GCORE option.

If you mistakenly set both GCORE and DUMPCORE, the server process first
calls gcore, dumps core, then continues until the DUMPCORE variable directs
the process to dump core again and send itself a segmentation violation
signal.

If DUMPCORE is set, you risk OnLine aborting whenever a user process
detects an inconsistency while it is in a critical section or holding a latch.

Set the DUMPCORE environment variable at the system prompt or in your
Jdogin or .cshrc (C shell) or your .profile (Bourne shell) file as follows:

C shell: set env DUMPCORE

Bourne shell: DUMPCORE =
export DUMPCORE

DUMPSHMEM

The DUMPSHMEM environment variable directs the OnLine database server
process to save a copy of shared memory to a file in the current directory or
the directory specified by DUMPDIR.

The filename takes the format shmem.pid.cnt. The pid value is the OnLine
database server process identification number. The cnt value is incremented
each time this process encounters an inconsistency. The cnt value can range
from 1 to 4. After 4 copies of shared memory are saved to separate files, no
more files are created. If the server process continues to detect inconsistencies
in this section of code, errors are reported to the OnLine message log (and
perhaps to the application), but no further diagnostic information is saved.

Data Consistency, Recovery, and Migration 4-11

Recovering from Corruption

4-12

Set the DUMPSHMEM environment variable at the system prompt or in your
Jdogin or .cshrc (C shell) or your .profile (Bourne shell) file as follows:

C shell: set env DUMPSHVEM

Bourne shell: DUMPSHVEM =
export DUMPSHVEM

DUMPDIR

The DUMPDIR environment variable directs the OnLine database server
process to save the diagnostic output generated by GCORE or DUMPSHMEM
to the specified directory instead of to the current directory.

Set the DUMPDIR environment variable at the system prompt or in your
Jdogin or .cshrc (C shell) or your .profile (Bourne shell) file as follows:

C shell: setenv DUWPDI R directory

Bourne shell: DUMPDI R=di rectory
export DUMPDI R

Recovering from Corruption

This section describes some of the symptoms of OnLine system corruption
and actions that OnLine or you, as administrator, can take to resolve the
problems. Corruption in an OnLine system can occur as a consequence of
problems caused by hardware or the operating system, or from some
unknown OnLine problems. Corruption can affect either user process data or
OnLine control information.

IBM Informix OnLine Database Server Administrator's Guide

Recovering from Corruption

OnLine alerts the user and administrator to possible corruption through the
following means:

= Error messages reported to the application state that pages, tables, or
databases cannot be found. The following message:

-105 ISAM error: bad isamfile fornmat

is always returned to the application if an operation has failed
because of an inconsistency in the underlying data or control
information.

= Consistency-checking messages are written to the OnLine message
log. The following message:

Fai | Consistency Check

includes diagnostic information that can help you determine the
source of the problem.

= The tbcheck utility returns errors.

Corrective actions for tbcheck errors are described, by thcheck
option, beginning on page 4-6.

At the first indication of corruption, run tbcheck -cl to determine if
corruption exists in the index. If you run tbcheck -cl in online mode, tbcheck
detects the corruption but does not prompt you for repairs. If corruption
exists, you can drop and re-create the indexes using SQL statements while
you are in online mode. If you run tbcheck -cl in quiescent mode and
corruption is detected, tbcheck prompts you to confirm whether the utility
should attempt to repair the corruption.

If tbcheck reports bad key information in an index, drop the index and re-
create it.

If tbcheck is unable to find or access the table or database, verify the UNIX
permissions on the device (chunk) where the table resides. If permissions are
not the source of the problem, the chunk might be down. (Refer to page 1-48
for more details about the proper device permissions.)

If an 1/0 error occurs during OnLine operation, the status of the chunk on
which the error occurred changes to down. If a chunk is down, the tbstat -d
display shows the chunk status as PD- for a primary chunk and MD- for a
mirror chunk. A message written to the OnLine message log contains the
UNIX error number that identifies the cause of the 1/0 error.

Data Consistency, Recovery, and Migration 4-13

Mirroring

If the down chunk is mirrored, OnLine continues to operate using the mirror
chunk. Use UNIX utilities to determine what is wrong with the down chunk
and then to correct the problem and bring the chunk back to online mode.
Restore mirrored chunk data by following the procedure described on

page 3-101.

If the down chunk is not mirrored and contains logical log files, the physical
log, or the root dbspace, OnLine immediately initiates an abort. Otherwise,
OnLine can continue to operate, but user processes cannot write to the down
chunk. You must take steps first to determine why the 170 error occurred and
then to correct the problem.

Important: If you take OnLine to offline mode when a chunk is marked as down
(“D™), you cannot reinitialize OnLine unless the down chunk is mirrored. The only
method for restoring the unmirrored chunk is to perform a data restore from archive.

Mirroring

When you mirror a chunk, OnLine maintains two copies of the chunk data.
Every write to a primary chunk is automatically followed by an identical
write to the mirror chunk. If a failure occurs on the primary chunk, mirroring
enables you to read from and write to the mirror chunk until you can recover
the primary chunk, all without interrupting user access to data. This section
provides background information about OnLine mirroring operation and
administration.

As administrator, you enable mirroring through DB-Monitor as part of disk-
space initialization. You can also enable mirroring by editing the configu-
ration file using a UNIX editor and reinitializing shared memory. (For specific
instructions, refer to page 3-104.)

You can start or end mirroring at any time. Mirroring is performed by chunk,
but it must be requested for an entire blobspace or dbspace. You cannot
mirror selected chunks within a blobspace or dbspace. Informix recommends
that you create a level-0 archive after you change the mirroring status of
OnLine data. (For specific instructions on creating an archive, refer to

page 3-57.)

4-14 |BM Informix OnLine Database Server Administrator's Guide

Beginning

Recover a mirrored chunk through the DB-Monitor Dbspaces menu, Status
option or through the tbspaces utility (change the status of the failed chunk
from down, D, to online, 0). When you initiate recovery, OnLine puts the
down chunk in recovery mode and copies the information from the online
chunk to the recovery chunk. When the recovery is complete, the chunk
automatically receives online status. You perform the same steps whether
you are recovering the primary chunk of a mirrored pair or recovering the
mirror chunk. (For information about monitoring chunk status codes, refer to
page 3-70.)

Beginning

Mirroring begins immediately after you create the mirror chunk, in most
cases. (The one exception occurs when you start mirroring for a dbspace that
contains logical log files. This topic is addressed in the next section.)

The new mirror chunk enters recovery mode automatically. A mirror-recovery
process copies information from the primary chunk to the mirror chunk.
When the two chunks are considered equal, the mirror chunk automatically
receives online status (O). From this point on, the mirror chunk reports that it
has zero free pages.

Data from the online chunk is copied to the chunk in recovery in eight-page
increments. During the copy, these blocks of pages are frozen. Any modifica-
tions that affect those pages must wait until the copy to the recovery chunk

is complete.

Recovery time is almost instantaneous when the primary chunk and mirror
chunk are being created in the same operation. If you are adding a mirror
chunk to an existing chunk, the recovery time depends on the amount of data
in the chunk.

The recovery procedure that marks the beginning of mirroring is delayed if
you are starting to mirror a dbspace that contains a logical log. Mirroring for
this dbspace does not begin until you create a level-0 archive.

Data Consistency, Recovery, and Migration 4-15

Processing

The reason for the delay is to ensure a proper restore. The level-0 archive
copies the updated OnLine configuration information (the newly created
mirror chunk) from the root dbspace reserved pages to the first block of the
archive tape. In the event of a data restore, the updated configuration infor-
mation at the beginning of the archive tape can direct OnLine to look for the
mirrored copies of the logical log files if the primary chunk becomes
unavailable. If you did not have the new archive information at the beginning
of the tape, OnLine would be unable to take advantage of the mirrored log
files.

This is also the reason why you cannot mirror a dbspace that contains a
logical log while an archive is being created. The new information that must
appear in the first block of the archive tape cannot be copied there once the
archive has begun.

Processing

During OnLine processing, mirroring is performed by executing two writes
(one to the primary chunk and one to the mirror chunk) for each modified

page.

OnLine detects an 170 error by checking the return code when it first opens
a chunk and after any read or write. If OnLine detects that a primary chunk
device failed during aread, OnLine changes the chunk status to down (D) and
begins reading from the mirror chunk. OnLine continues to read from the
mirror chunk for as long as the primary chunk status remains down.

If OnLine detects that a primary chunk device failed during a write, writes

continue to the one chunk that remains online. This is also true if one of the
chunks is intentionally brought down by the administrator. Writes continue
on the other chunk.

Once the down chunk is recovered and returned to online status, reads are
again performed on the primary chunk and writes are made to both the
primary and mirror chunks.

4-16 IBM Informix OnLine Database Server Administrator's Guide

Recovery

Important: If OnLine detects an 1/O error on a chunk that is not mirrored, OnLine
marks the chunk as down. If the down chunk contains logical log files, the physical
log, or the root dbspace, OnLine immediately initiates an abort. Otherwise, OnLine
can continue to operate but processes cannot write to the down chunk. The only
method for restoring an unmirrored chunk is to perform a data restore from archive.

If you take OnLine to offline mode when a chunk is marked as down, you cannot
reinitialize OnLine unless the down chunk is mirrored.

Recovery

When OnLine recovers a mirrored chunk, it performs the same recovery
procedure it uses when mirroring begins. A mirror-recovery process copies
the data from the existing online chunk onto the new, repaired chunk until
the two are considered equal.

Ending

When OnLine ends mirroring, it immediately frees the mirror chunks and
OnLine makes the space available for reallocation.

The action of ending mirroring takes only a few seconds. No other event
(such as a checkpoint) is triggered by the action of ending mirroring.

A level-0 archive created after you end mirroring ensures that this infor-
mation is copied to the archive tape. This prevents the restore procedure from
assuming mirrored data is still available.

Data Consistency, Recovery, and Migration 4-17

OnLine Logging Overview

4-18

OnLine Logging Overview

The logical log files are at the center of all OnLine data-recovery mechanisms.

The logical log files receive three types of records during processing, even if
no databases are created with transaction logging:

» SQL data definition statements (DDL) for all databases

= Changes to OnLine configuration (includes changes to chunks,
dbspaces, and blobspaces)

s Checkpoint events

The logical log files also receive one or more records of each SQL data
management statement (DML) that is executed in a database created with
logging. SELECT statements are not logged.

The logical log files serve three functions that affect all OnLine mechanisms
for data recovery and consistency:

= Ifadatabase uses transactions and a transaction must be rolled back,
OnLine uses the records in the logical log files to reverse the changes
made on behalf of the transaction.

» If a data restore is needed, OnLine uses the records in the logical log
files to roll forward all work performed since the last archive.

= If OnLine has been shut down in an uncontrolled manner, OnLine
uses the records in the logical log files to implement fast recovery
and bring the system back online in a consistent state without loss of
data.

The information that OnLine writes to the logical log differs, depending on
whether the operation involves dbspace data or blobspace data. When
OnLine logs operations involving dbspace data, the data rows (including
dbspace blobs) are included in the logical log records. This is not true for
blobspace data. Blobspace data is not copied to the logical log.

Blobspace data is potentially too voluminous to be included in the logical log
files. If it were, the many kilobytes of data per blob would overwhelm the
space allocated for the log files. Instead of storing the blobspace data needed
for recovery in the logical log files, OnLine copies the blobspace pages from
disk directly to the logical log backup tapes when the log files are backed up,
without going through the logical log files.

IBM Informix OnLine Database Server Administrator's Guide

Dbspace Logging

Dbspace Logging

OnLine logs dbspace data operations in six steps, illustrated in Figure 4-1 on
page 4-20.

Following is an overview of steps in logging dbspace data:

1.
2.
3.

Read the data page from disk to shared-memory page buffer.
Copy the unchanged page to the physical log buffer.

Write the new data into the page buffer; create a logical log record of
the transaction, if needed.

Flush physical log buffer to the physical log on disk.
Flush logical log buffer to a logical log file on disk.
Flush the page buffer and write it back to disk.

Data Consistency, Recovery, and Migration 4-19

Dbspace Logging

‘ Figure 4-1
| Application Process | OHLC;EES Fl)ggz
operations in six
Pipe steps.
Database server process

Private dataportion
of server's virtual Row data
address space

OnLine shared memory

OnLine disk

Logical log file
Logical log
buffer
Data page
buffer 4- /ﬁ
Physical log buffer Physical log

4-20 IBM Informix OnLine Database Server Administrator's Guide

Dbspace Logging

In general, an insert or an update begins when a database server process
requests a row. OnLine identifies the page on which the row resides and
attempts to locate the page in the OnLine shared-memory buffer pool. If the
page is not already in shared memory, it is read into shared memory from
disk.

Before a dbspace data page is first modified, a copy of the unchanged page is
stored in the physical log buffer. This copy of the “before-image” of the page
is eventually flushed from the physical log buffer to the physical log on disk.
The “before-image” of the page plays a critical role in fast recovery. (While
the data page is in shared memory, subsequent modifications do not require
another “before-image” to be stored in the physical log buffer.)

Data from the application tool process is passed to the database server
process. The data is stored in the private data portion of the virtual address
space of the process. After a copy of the unchanged data page is stored in the
physical log buffer, the new data is written to the page buffer already
acquired by the database server process.

At the same time, all information needed to roll back or re-create this
operation is written to the logical log buffer in the form of a transaction
record.

The physical log buffer must flush before the data buffer flushes to ensure
that a copy of the unchanged page is available until the changed page is
copied to disk. The “before-image” of the page is no longer needed after a
checkpoint occurs. (During a checkpoint all modified page in shared memory
are flushed to disk providing a consistent point from which to recover from
an uncontrolled shutdown. Refer to page 2-72 for a detailed discussion of
what happens during a checkpoint.)

After the physical log buffer is flushed, the shared-memory page buffer is
flushed and the data page is written to disk. (Refer to page 2-74 for more
details about the relationship between physical log buffer flushing and
shared-memory buffer pool flushing.)

When the logical log buffer is flushed, the logical log record is written to the
current logical log file on disk. A logical log file cannot become free (and
available for reuse) until all transactions represented in the log file are
completed and the log file is backed up to tape. This ensures that all open
transactions can be rolled back, if required. (Refer to page 2-66 for more
details about when the logical log buffer is flushed.)

Data Consistency, Recovery, and Migration 4-21

Blobspace Logging

Blobspace Logging

OnLine logs blobspace data in three steps, illustrated in Figure 4-2 on
page 4-23. Blobspace data does not pass through shared memory or the
logical log files on disk.

Following is an overview of steps in logging blobspace data:

1. Blobspace data flows from the pipe, through temporary buffers in the
database server process memory space, and is written directly to
disk. If the blob requires more than one blobpage, links and pointers
are created as needed.

2. Avrecord of the operation (insert, update, or delete) is written to the
logical log buffer, if the database uses logging. The blob data is not
included in the record.

3. When alogical log backup begins, OnLine uses the logical log ID
number stored in the blobspace free-map page to determine which
blobpages to copy to tape.

4-22 |IBM Informix OnLine Database Server Administrator's Guide

Blobspace Logging

Application process

OnLine
shared
memory

N—\

Pipe

Database server process

Y

Temporary blob buffer

Private portion
of virtual
address space 5

Temporary blob buffer

OnLine disk

OnLine logical log backup

OnLine disk

Blobspace

Figure 4-2

OnLine logs
blobspace
operations in three
steps.

Data Consistency, Recovery, and Migration 4-23

Blobspace Logging

4-24

Operations Logging

OnL.ine does not copy blobspace data to the logical log files. This is the
important difference between the way that OnLine logs blobspace data and
dbspace data.

A record of the blobspace operation is written to the logical log buffer, but the
logical log records do not include a copy of the blobspace data. The logical
log records only include images of the blobspace overhead pages: the free-
map pages and the bit-map pages. (Refer to page 2-148 for information about
the blobspace overhead pages.) By logging these overhead pages, the logical
log file records track blobpage allocation and deallocation (when blobs are
deleted from blobpages).

Since the logical log records do not include blobspace blob data, the tbtape
process must somehow locate and copy to the logical log tape each blobpage
that was allocated while this logical log file was current.

How does tbtape know which blobpages to copy? It reads the information
from the entries in the blobspace free-map page.

When a blob is written to a blobspace, it is the function of the blobspace free-
map page to allocate and track the blobpages that were used to store the blob
data. Therefore, as part of blobpage allocation, an entry is placed in the free-
map page indicating the blobpages that are now allocated and contain blob
data. The entry also includes the logical log ID number that was current when
the blobpage was allocated. By reading this information, the tbtape process
can identify all blobpages that are associated with the insert, update, and
delete records contained in a specific logical log file. (Refer to page 4-26.)

Operations Rollback

How can a blobspace operation be rolled back if the logical log file does not
contain a copy of the data that was originally inserted?

The answer is that OnLine always has access to a copy of the blobspace data
until the transaction is committed. However, the accessible copy of the data
is maintained either in the blobspace on disk or on the logical log backup
tape, not in the logical log itself. The logical log is needed, because the log
contains the blobspace control pages, which track the location and status of
the blobpages.

IBM Informix OnLine Database Server Administrator's Guide

Blobspace Logging

OnLine allocates and deallocates blobpages via the blobspace free-map
pages. (Refer to page 2-148.) If a blobspace blob is deleted during a trans-
action, the entries in the free-map page for the blobpages storing the blob are
marked for deletion. The blob data is unchanged. If the transaction is
eventually rolled back, OnLine simply reverses the change to the blobpage
status in the free-map page entry. Even if the transaction is committed, the
blobpages remain protected until the logical log file in which the delete
occurred becomes free. That is, the blobpages become “free”” and available for
reuse only after logical log file in which the deletion occurred is no longer
needed for a data restore. One consequence of this strategy is that you do not
see the effect of deleting blobspace blobs to increase available space until you
free the logical log file in which the delete occurred.

Blob Restoration

How can a blobspace blob be restored if the logical log records do not include
the data?

The answer is that even though blobspace blobpages never pass through the
logical log files, blobpages are copied directly to the logical log backup tape.
OnLine performs the copying as part of the logical log backup procedure.

When you request a logical log backup, you start the tbtape process. (If you
request the logical log backup through DB-Monitor, the monitor process
tbmonitor starts the tbtape process for you.) When the tbtape utility process
begins a logical log backup to tape, it notes the logical log file ID. Next, tbtape
checks the blobspace free-map pages for every blobspace, looking for
blobpages that were allocated during the time that this logical log file was
current. The current logical log ID number is stored in the blobspace free-
map page each time a blobpage is allocated.

The tbtape process copies each blobpage allocated when this logical log file
was current to the backup tape before any logical log record is copied. Then
tbtape continues the backup procedure, copying to tape the records from the
logical log file. In this way, tbtape creates a permanent record of blobpage
data and associated logical log records without overburdening the capacity
of the logical log files.

For further information about what happens during the logical log backup
procedure, refer to page 4-26.

Data Consistency, Recovery, and Migration ~ 4-25

What Happens During Logical Log Backup

4-26

For further information about what happens during a data restore, refer to
page 4-45.

What Happens During Logical Log Backup

Logical log file backup can be initiated implicitly as part of continuous
logging or explicitly by the OnLine administrator or operator, either through
DB-Monitor or by executing tbtape. The backup is performed by the tbtape
process (even if requested through DB-Monitor).

The logical log backup achieves two objectives:

1. Itstores the logical log records on tape so they can be rolled forward
if a data restore is needed.

2. Itfrees logical log file space to receive new logical log records.
Outlined below are the main steps in the logical log backup procedure.

Ready LTAPEDEYV, the logical log backup tape device
Locate the next logical log file to be backed up

Check blobspaces for blobpages to be backed up
Write blobpages to tape

Write log header page and log pages to tape

o a ~ wn e

Write trailer at end of backup session

IBM Informix OnLine Database Server Administrator's Guide

Ready LTAPEDEV

Ready LTAPEDEV

When you request a logical log backup, you are prompted to mount a tape on
the tape device specified as LTAPEDEYV in the configuration file. The tbtape
process prompts you to verify that the tape device is ready.

If the tape is new, the tbtape utility process writes a tape header page to the
device. This tape header page contains the following information:

= The tape device block size (LTAPEBLK)

m The size of tape (LTAPESIZE)

= A flag that indicates the tape is for logical log backup

= A timestamp that indicates the date

Locate the Next Logical Log

The tbtape process locates the oldest logical log file that has been used but
not backed up (status U).

OnLine backs up all full logical logs. If more than one tape is needed, OnLine
provides you with labelling information for the full tape and prompts you to
mount a new tape.

If Continuous-Logging is chosen, tbtape begins to back up all currently full
log files. The tbtape process then waits for the current log to become full. As
each log file becomes full, tbtape automatically initiates a back up.

Copy Blobpages

The tbtape process begins by comparing the identification number of the log
file it is backing up with every entry on every blobspace free-map page. The
tbtape process is looking for blobpages that were allocated during the time
this logical log file was the current log file. (Refer to page 2-148 for more infor-
mation about the blobspace free-map page and its role in logical log file
backups.)

Data Consistency, Recovery, and Migration ~ 4-27

Place Log Header on Tape

4-28

Each blobpage that was allocated during the time that this log file was
current is copied to the tape device LTAPEDEV. This is required as part of
blobspace logging to ensure that blobspace blobs can be restored after a
DELETE statement, if required. (Refer to page 4-22 for a detailed explanation
of blobspace logging.)

Place Log Header on Tape

After all blobspace free-map pages have been checked and the required
blobpages have been copied to tape, tbtape writes a log header page to the
device.

The log header page is distinct from the tape header page. The log header
page specifies the identification number of the logical log file and the number
of pages from the logical log file that need to be copied.

IBM Informix OnLine Database Server Administrator's Guide

Write Log Records to Tape

Write Log Records to Tape

The tbtape process begins copying each page in the logical log file to tape.
When the last page in the log file is copied, the backup is complete. Figure 4-3
illustrates the order of information on the logical log backup tape.

: : . Figure 4-3
Order of information on the logical log backup tape Each logical log

backup begins with

blobpages, if any,

[\ then the header
page, and then the
Blobspace A log records.

1
: ELITT]
Logical log backup tape)/

(O@)~— | mm

3
Logical log
)

. backup session
Logical log (status U-B header page

Logical log (status U)

Logical log (status U-C)

If the backup was initiated implicitly through continuous logging, the logical

log backup session continues. The tbtape process waits until the next logical
log file becomes full.

Data Consistency, Recovery, and Migration 4-29

Write Trailer Page

If the backup was initiated explicitly through tbtape -a or Auto-Backup,
tbtape looks for another log file with status U. If another log file requires
backup, the procedure is repeated. If tbtape cannot find another candidate
for logging, it prompts the operator to indicate if the current log file is to be
backed up. If so, the log files are switched and the backup procedure is
repeated for the formerly current log.

Write Trailer Page

When the entire procedure is complete, tbtape writes a trailer page that
indicates the end of the backup session.

Control is returned to the administrator.

If the tape mounted on LTAPEDEV becomes full before the end of the logical
log file, the operator is prompted for a new tape.

A tape header page is written to the new tape, along with a new log header
page. The page information in the log header contains the number of pages
that remain to be copied to complete the logical log file.

What Happens During an Archive

Archiving creates a complete record on tape of all used disk pages at a single
point in time. A level-0 archive contains all used disk pages. Level-1 and
level-2 archives are incremental, recording changes since the last archive.
With the information contained on the archive tapes and the logical log
backup tapes, you can re-create the state of OnLine data at some known point
in time.

OnLine creates an archive when the OnLine administrator or operator
requests one. Archives are not created automatically. Outlined below are the
main steps that are completed during an online archive.

1. tbtape reads archive information from reserved pages.

2. Operator readies TAPEDEYV, the archive tape device.

3. tbtape verifies the archive level requested.

4. tbtape checks that adequate logical log space exists.

4-30 IBM Informix OnLine Database Server Administrator's Guide

Read Archive History Information

tbtape forces a checkpoint.
tbtape synchronizes activity with the thinit process.
tbtape writes tape header page.

tbtape archives reserved pages and logical log files that contain open
transactions.

© N o o

9. tbtape defines the archive criteria.

10. tbtape searches by chunk for disk pages that meet archive criteria
and archives those pages.

11. tbtape monitors pages written to the physical log and archives all
pages that meet archive criteria.

12. tbtape writes an end-of-archive trailer page.
13. tbtape updates archive information in the reserved pages.

Read Archive History Information

When the archive is first requested, the tbtape utility process begins assem-
bling the information it needs to create an archive. It reads the value of
TAPEDEV from the configuration file and reads archive history from the
active root dbspace reserved page. (Refer to page 2-102 for more details about
PAGE_ARCH.)

The tbtape process uses the reserved-page information first to verify the
archive level (for example, a level-0 archive is required before a level-1

archive can be created). Later, tbtape uses the timestamp of the previous
archive to set the criteria for determining which pages must be archived.

Mount a Tape on TAPEDEV

When you request an archive, you are prompted to mount a tape on the
archive tape device and to verify that the tape device is ready. Do not store
more than one archive on the same tape; begin every archive with a different
tape. (It is likely that an archive will span more than one tape.)

Data Consistency, Recovery, and Migration 4-31

Verify the Archive Level

4-32

Verify the Archive Level

As part of the archive request, you specify an archive level. The tbtape
process compares the specified archive level with the information that was
obtained from the PAGE_ARCH reserved page.

If tbtape cannot find a record of a previous archive on the reserved page, the
only valid archive level is a level-0 archive. Otherwise, any archive level is
valid.

(A level-0 archive to /dev/null registers as a valid archive. Therefore, OnLine
permits you to create a level-1 archive on a tape device if your only level-0
archive was created when the archive device was /dev/null. Because of the
problems this could create if a data restore were needed, avoid this situation.)

Check Free Space in the Logical Log

The tbtape process temporarily freezes the status of unreleased logical log
files and does not permit any log file to become free. The tbtape process
checks the total amount of free log space. If free space is less than half of one
log file, OnLine refuses the archive request and recommends that you back
up the logical logs.

Force a Checkpoint

After tbtape verifies that the archive can proceed, it forces a checkpoint.
During the checkpoint, tbtape gathers reference information that serves as a
snapshot of all OnLine data at this time.

The checkpoint marks the beginning of the archive. OnLine shared memory
and disk pages are brought to a consistent state. (Refer to page 2-70 for
further information about checkpoints.)

The address of the most-recently written record in the current logical log file
is noted. This record becomes the last record from the log that will be copied
as part of this OnLine archive.

If this archive is an online archive, all changes to OnLine data that occur after
this point are considered beyond the range of the archive and are retained as
part of the logical log file records.

IBM Informix OnLine Database Server Administrator's Guide

Synchronize thtape and thinit Activities

(It is likely that some transactions are ongoing during an online archive
procedure. The restore procedure describes how transactions that span the
archive tape and the logical log file are rolled back during a data restore, if
necessary. Refer to page 4-45.)

Purpose of Checkpoint Timestamp

The checkpoint timestamp becomes the standard against which disk pages
are compared for archiving purposes. (Timestamps are not based on system
time. Refer to page 2-44 for further information about timestamps.)

For example, if the checkpoint occurs at 3401, then for a level-0 archive, all
pages containing timestamps less than 3401 must be copied to tape. As tbtape
reads through disk pages during the archive, pages with timestamps greater
than 3401 are ignored. OnLine relies on the logical log files to contain records
of modifications that occur after 3401.

Purpose of Data Snapshot

During the checkpoint, tbtape also creates a snapshot of information that is
needed as reference to execute the archive procedure.

The snapshot information describes, for every OnLine chunk, the pages that
were allocated and the pages that were free at the time of the checkpoint. This
information is needed because the status of the pages might change during
an online archive. OnLine does not read pages that were considered free at
the time of the begin-archive checkpoint.

The snapshot also defines the pages that composed the logical log files and
the physical log files at the time of the checkpoint. This snapshot enables
tbtape to recognize and skip (not archive) pages that were allocated to logs
at the time of the checkpoint.

Synchronize tbtape and thinit Activities

During an online archive, tbtape archives disk pages at the same time that
OnLine processing modifies disk pages. Assume that the archive-begin
checkpoint for a level-0 occurred at 3401. How does tbtape overcome the
problem of archiving every page at its 3401-state if OnLine processing is
constantly modifying pages?

Data Consistency, Recovery, and Migration ~ 4-33

Synchronize thtape and thinit Activities

4-34

The answer is that tbtape and tbinit synchronize their activities at the
beginning of the archive and continue to work in concert until the end of the
archive. The following paragraphs describe the consequences of this
cooperation.

Archive Disk Pages

The first task is to prevent any specific disk page from being modified until
tbtape has had a chance to archive that page in its archive-begin state. The
tbtape process neatly accomplishes this task without interrupting
processing.

During an archive, tbtape periodically scans the physical log looking for
“before-images” that contain timestamps that are less than the begin-archive
checkpoint timestamp. Each “before-image” page that meets this criterion is
copied to the archive tape.

OnLine cannot rely on scanning to obtain every required “before-image.”
The tbinit process must be blocked from flushing the physical log (by
completing a checkpoint) until tbtape can verify that it has copied all
required “before-images.” This is accomplished by ensuring that the tbtape
archive processing remains in critical-section code throughout the
procedure, effectively blocking a checkpoint from occurring. (Refer to

page 2-28 for more details about critical sections.)

When the need arises to flush the physical log, tbinit notifies tbtape. The
tbtape process scans the physical log to copy any required “before-images”
to the archive tape. (Periodic scanning prevents this final check and copy
from unduly prolonging the checkpoint.)

Copying done, tbtape temporarily exits from its critical section long enough
for tbinit to complete its checkpoint. When the checkpoint is complete,
tbtape reenters the critical section, again blocking tbinit from executing a
checkpoint.

IBM Informix OnLine Database Server Administrator's Guide

Write Tape Header Page

Archive blobpages

The second task facing tbtape is to prevent database server processes from
overwriting blobspace blobpages before they have been archived. Since
blobpages do not pass through shared memory, the strategy of archiving
from the physical log (described in the preceding section) is insufficient in
itself. In addition, tbtape must postpone all changes to blobpages until after
the blobpage is archived.

To accomplish this, tbtape blocks allocation of blobpages in each blobspace
chunk until tbtape has read and archived all used blobpages in the chunk. As
soon as the chunk is archived, blobpage allocation in that chunk resumes.

One implication of this implementation is that during an online archive,
blobs cannot be inserted into a blobspace until the blobspace chunk has been
archived. Since chunks are read and archived by tbtape in order of the chunk
identification numbers, you can minimize this inconvenience by creating
blobspaces early, ensuring a low chunk ID number.

Write Tape Header Page

After tbtape and tbinit have synchronized activities, tbtape writes a tape
header page to the archive device. The tape header page contains the
following information:

= The tape device block size (TAPEBLK)

= The size of tape (TAPESIZE)

= A flag that indicates the tape is for an archive

= Atimestamp that indicates the date and time of the archive

= Thearchive level

= The ID number of the logical log file that contains the checkpoint
record that began the archive

= The physical location of that checkpoint record in the logical log file

If the archive device (TAPEDEV) is defined as /dev/null, tbtape does not write
a page to the device. Instead, tbtape updates the active PAGE_ARCH reserved
page with the same information that would have been written to the header
page. (Refer to the preceding list.) The checkpoint information is also copied
to the active PAGE_CKPT (checkpoint) reserved page.

Data Consistency, Recovery, and Migration 4-35

Archive Reserved Pages

4-36

With this action, the root dbspace reserved pages receive acknowledgment
that an archive has occurred. This event enables OnLine to make use of newly
added or changed resources. (A level-0 archive to /dev/null registers as a
valid archive. OnLine permits you to create a level-1 archive on a tape device
even if your only level-0 archive was created when the archive device was
/dev/null. Because of the problems this could create if a data restore were
needed, avoid this situation.)

Having performed this function, tbtape considers the archive complete.
Synchronization with tbinit is ended. Control is returned to the
administrator.

Archive Reserved Pages

After tbtape writes the tape header page, it begins reading and writing pages
to the archive tape in a specific order.

First, tbtape reads and archives each of the root dbspace reserved pages.

Second, tbtape reads and archives the contents of all logical log files that
contain records that are part of open transactions, up to the point of the
begin-archive checkpoint.

After selected logical log pages are archived, tbtape begins reading the
OnLine primary chunks in the order in which they are listed on the active
PAGE_PCHUNK page of the root dbspace reserved pages.

Mirror chunks, which are listed on the active PAGE_MCHUNK reserved page,
are not explicitly read for archiving. Pages within a mirror chunk are
archived only if tbtape cannot read the page from the primary chunk.

IBM Informix OnLine Database Server Administrator's Guide

Determine Archive Criteria

Determine Archive Criteria

As tbtape reads each disk page, it applies a set of criteria that determines
which disk pages should be archived.

The tbtape process only archives pages that meet these criteria:

= The page has been allocated.
= The page is not part of a logical log file or the physical log.
= The page is needed for this archive level.

OnLine streamlines the archive procedure by ignoring disk pages that are
dedicated to OnLine but which were not yet allocated at the time of the
begin-archive checkpoint.

Before tbtape begins to read a chunk, it consults the snapshot of OnLine
activity to identify unallocated pages. (This information is contained in
entries on the dbspace chunk free-list pages. Refer to page 2-103.)

As tbtape reads a dbspace chunk, it recognizes the address of any unallo-
cated page that was, at the time that the archive began, the first page of a
contiguous block of free space. If a block of free space is found, tbtape skips
to the page that was, at the time, the end of that block of space.

When tbtape begins reading a blobspace chunk; it queries the blobspace free-
map page and skips over any blobpage marked as free. Since blobspace
blobpage allocation was frozen at the time that the archive began, this infor-
mation is still current. (Refer to page 2-148 for further information about the
blobspace free-map page.)

The tbtape process checks the snapshot of reference information to identify
each dbspace page that was part of a logical log file or part of the physical log
at the time that the archive began. While tbtape reads each dbspace chunk, it
recognizes the address of the first page in the contiguous block that was the
physical log or was a logical log file at the time the archive began. When this
occurs, tbtape skips to the page that was, at the time, the end of the block.

The archive level affects the archive criteria. A level-0 archive requires tbtape
to archive all used disk pages containing a timestamp less than the begin-
archive checkpoint timestamp.

Data Consistency, Recovery, and Migration ~ 4-37

Archive Disk Pages That Meet Criteria

4-38

A level-1 archive directs tbtape to consider a narrower range of used pages.
The archive criteria become all disk pages containing a timestamp that is less
than the begin-archive checkpoint timestamp but greater than the timestamp
associated with the most recent level-0 archive. The tbtape process reads the
value of the most-recent level-0 archive timestamp from the active
PAGE_ARCH reserved page.

A level-2 archive also directs tbtape to consider a narrower range of used
pages. The archive criteria become all disk pages containing a timestamp that
is less than the begin-archive checkpoint timestamp but greater than the
timestamp associated with the most recent archive (any other level). Again,
tbtape reads the value of the most-recent archive timestamp from the active
PAGE_ARCH reserved page.

Archive Disk Pages That Meet Criteria

After the archive criteria are established, tbtape begins to read the disk pages
in the chunk that is identified with chunk number 1. Each of the chunks is
read in order. (OnLine chunks are listed in order in the active PAGE_PCHUNK
reserved page.) Each page that meets the tbtape criteria for archiving is
copied to the archive tape.

Monitor and Archive Physical Log Pages

While tbtape reads disk pages, it periodically reads the pages stored in the
physical log, looking for pages that meet the archive timestamp criterion.
Each page that qualifies is copied to the archive tape. (Refer to page 4-34.)

Write a Trailer Page

When tbtape reaches the last page of the last chunk, the disk-reading portion
of the archive procedure is complete. The tbtape process writes a trailer page
to the tape, marking the end of the archive tape.

Update the Reserved Pages

As the last step in the archive process, tbtape updates the active PAGE_ARCH
reserved page with the newest archive information.

IBM Informix OnLine Database Server Administrator's Guide

Fast Recovery

Fast Recovery

Fast recovery is an automatic, fault tolerance feature that OnLine executes
any time the operating mode changes from offline to quiescent mode. The
aim of fast recovery is to return OnLine to a state of physical and logical
consistency with minimal loss of work in the event of a system failure.

Fast recovery attains two goals:

= The physical log is used to return OnLine to the most-recent point of
known physical consistency, the most-recent checkpoint.

= The logical log files are used to return OnLine to logical consistency;,
by rolling forward all committed transactions that have occurred
since the checkpoint and rolling back all transactions that were left
incomplete.

Fast recovery addresses situations like the following: OnLine is processing
tasks for more than 40 users. Dozens of transactions are ongoing. Without
warning, the operating system fails.

How does OnLine bring itself to a consistent state again? What happens to
ongoing transactions?

How Does OnLine Initiate Fast Recovery?

OnLine checks to see if fast recovery is needed every time that the adminis-
trator brings OnLine to quiescent mode from offline mode.

As part of shared-memory initialization, tbinit checks the contents of the
physical log. Normally, the physical log is empty when OnLine shuts down
under controlled circumstances. The move from online mode to quiescent
mode includes a checkpoint, which flushes the physical log. Therefore, if
tbinit finds pages in the physical log, it is clear OnLine went offline under
uncontrolled conditions, and fast recovery begins.

Data Consistency, Recovery, and Migration 4-39

Fast Recovery and Logging

4-40

The aim of fast recovery is to return OnLine to a consistent state as part of
shared-memory initialization. The actions that OnLine takes as it implements
fast recovery can be summarized in four steps:

1. Return all disk pages to their condition at the time of the most-recent
checkpoint using the data in the physical log. (See Figure 4-4 on
page 4-41.)

2. Locate the most-recent checkpoint record in the logical log files. (See
Figure 4-5 on page 4-42.)

3. Roll forward all logical log records written after the most-recent
checkpoint record. (See Figure 4-6 on page 4-43.)

4. Roll back transactions that do not have an associated COMMIT
(commit work) record. (See Figure 4-7 on page 4-44.)

The result is that OnLine data is returned to a consistent state: all committed
transactions are restored and all uncommitted transactions are rolled back.

Fast Recovery and Logging

If a database uses buffered logging, some logical log records associated with
committed transactions might not be written to the logical log at the time of
the failure. If this occurs, fast recovery is unable to restore those transactions.
Fast recovery can only restore transactions with an associated COMMIT
(commit work) record stored in the logical log or on disk. (This is why
buffered logging represents a trade-off between performance and data
vulnerability.)

For databases that do not use logging, fast recovery restores the database to
its state at the time of the most-recent checkpoint. All changes made to the
database since the last checkpoint are lost.

IBM Informix OnLine Database Server Administrator's Guide

Step 1: Checkpoint Condition

Step 1: Checkpoint Condition

The first step, returning all disk pages to their condition at the time of the
most-recent checkpoint, is accomplished by writing the “before-images”
stored in the physical log back to disk. Each “before-image” in the physical
log contains the address of a page that was updated after the checkpoint. By
writing each “before-image” page in the physical log back to disk, changes to
OnLine data since the time of the most-recent checkpoint are undone.
Figure 4-4 illustrates this step. (For more information about the contents and
function of the physical log, refer to page 2-152.)

Figure 4-4
Fast Recovery: Step 1 Fast recovery,
Write “before-images” from the physical log back to disk, returning the data to step 1

its state as of the most-recent checkpoint.

Disk A Disk B

Thispace Physical log

Step 2: Find Checkpoint Record in Logical Log

The second step is to locate the address of the most-recent checkpoint record
in the logical log. The most-recent checkpoint record is guaranteed to be in
the logical log on disk.

All address information needed to locate the most-recent checkpoint record
in the logical log is contained in the active PAGE_CKPT page of the root
dbspace reserved pages.

Data Consistency, Recovery, and Migration 4-41

Step 2: Find Checkpoint Record in Logical Log

4-42

Once this information is read, it also identifies the location of all logical log
records written after the most-recent checkpoint. Figure 4-5 illustrates this
step.

Figure 4-5
Fast Recovery: Step 2 Fast recovery,
The physical address of the most-recent checkpoint record is stored in the root step 2

dbspace reserved page, PAGE_CKPT. The checkpoint record is located in the
logical log.

Logical log

Reserved page

Checkpoint record PAGE CKPT
\ Checkpoint
record
address

IBM Informix OnLine Database Server Administrator's Guide

Step 3: Roll Forward Log Records

Step 3: Roll Forward Log Records

The third step in fast recovery is to roll forward the logical log records that
were written after the most-recent checkpoint record. This action reproduces
all changes to the databases since the time of the last checkpoint, up to the
point where the uncontrolled shutdown occurred. Figure 4-6 illustrates this
step.

Figure 4-6
Fast Recovery: Step 3 Fast recovery,
OnLine rolls forward the logical log records written since the most-recent step 3

checkpoint, reproducing the changes to the database since the checkpaint.

Logical log

Disk A

Database changes since —

the checkpoint rolled 4/
forward

Records since the
checkpoint

Data Consistency, Recovery, and Migration 4-43

Step 4: Roll Back Incomplete Transactions

Step 4: Roll Back Incomplete Transactions

The final step in fast recovery is to roll back all logical log records that are
associated with transactions that were not committed (or were rolled back).
This rollback procedure ensures that all databases are left in a consistent
state.

Since it is possible that one or more transactions have spanned several check-
points without being committed, this rollback procedure might read
backward through the logical log past the most-recent checkpoint record. All
logical log files that contain records for open transactions are available to
OnLine because a log is not freed until all transactions contained within it are
closed. Figure 4-7 illustrates the roll-back procedure. When fast recovery is
complete, OnLine goes to quiescent or online mode.

Figure 4-7
Fast Recovery: Step 4 Fast recovery.
OnLine rolls back all incomplete transactions, ensuring that all databases are step 4
left in a consistent state. Records written earlier than the checkpoint might be
rolled back.
Logical log
Disk A /"
[
,/
Uncommitted changes /
rolled back

4-44 |BM Informix OnLine Database Server Administrator's Guide

Data Restore: When Should You Do [t?

Data Restore: When Should You Do [t?

Three types of situations could occur in an OnLine environment that would
require you, as OnLine administrator, to perform a data restore:

= You want to replace one or more disks.
= Your disk experiences a media failure.
= Your OnLine data experiences extreme corruption.

A data restore re-creates the OnLine system that was in effect at the time of
your most-recent archive, plus any changes that have been backed up to a
logical log tape.

You cannot restore a selected table or database. Since you perform a data
restore from the complete set of archive and logical log backup tapes, OnLine
restores the complete contents of those tapes, which include all OnLine
databases. Refer to page 4-45 for a description of what happens during a data
restore.

Outlined below are the main steps that are part of the data restore procedure.
Following this list, each item is described in greater detail. If you press the
Interrupt key at any time during the restore, you must repeat the entire
procedure.

Steps That Occur During a Data Restore

1. Gather all archive and logical log backup tapes needed for the
restore.

2. Verify that your current shared-memory parameters are set to the
maximum value assigned since the last archive (any level).

3. Verify that your current device (and mirroring) configuration
matches the configuration that was in effect at the time of the last
archive (any level).

4. \erify that all raw devices that have been in use since the last archive
are available.

5. Take OnLine to offline mode.

6. Select the DB-Monitor Archive menu, Restore option or execute
tbtape -r.

Data Consistency, Recovery, and Migration ~ 4-45

Steps That Occur During a Data Restore

4-46

10.

11.

12.
13.
14.
15.

16.

Mount the first level-0 archive tape on TAPEDEV.

The tbtape process reads reserved page information from the tape
and verifies that the current configuration and the tape are
compatible.

Back up any logical log files remaining on the disk, if prompted by
tbtape. Mount tape on LTAPEDEV.

The tbtape process reads each page of data from the archive tape(s)
and writes the page to the address contained in header.

After the last archive tape is restored, the tbinit daemon process
clears the physical log to prevent fast recovery activity.

The tbinit process initializes shared memory.
The tbtape process prompts for the logical logs to be rolled forward.
Mount the correct tape (as prompted) on LTAPEDEV.

The tbinit process rolls forward the logical logs, prompting for more
tapes as required.

After the rollforward is complete, OnLine remains in quiescent mode
and tbinit returns control to the administrator at the DB-Monitor
Archive menu.

IBM Informix OnLine Database Server Administrator's Guide

Gather All Tapes Needed for Restore

Gather All Tapes Needed for Restore

To restore OnLine, you need all archive tapes (level-0, and possibly level-1
and level-2) and the tapes containing the logical log backups since the last
archive. The tapes you need are listed for you when you select the
DB-Monitor Status menu, Archive option. Refer to Figure 4-8 if you are
uncertain about how to determine which archive tapes are needed for a data
restore.

Figure 4-8
Incremental Archive Schedule How to determine
which archive tapes
Archive Day are needed for a
data restore
Level-2 2 3 5 6 8 9 11
Level-1 4 7
Level-0 1 10
Restore Requirements
Day Tapes Needed
1 Tape 1
2 Tapes 1and 2
3 Tapes 1 and 3
4 Tapes 1and 4
5 Tapes1,4,and 5
6 Tapes 1, 4,and 6
7 Tapes Land 7
8 Tapes1,7,and 8
9 Tapes 1,7,and 9
10 Tape 10
11 Tapes 10 and 11

Data Consistency, Recovery, and Migration ~ 4-47

Verify OnLine Configuration

4-48

Logical logs files that remain on disk and which have not yet been backed up
can still be included in the restore. As part of the restore procedure, OnLine
prompts you to back up those logical log files to tape, so that they can be
rolled forward after the archive tapes have been restored. (This might not be
true if the disks containing the logs failed.)

Verify OnLine Configuration

During the restore, you cannot reinitialize shared memory, add chunks, or
change tape devices. This means that when you begin the restore, the current
OnLine configuration must be compatible with, and accommodate, all
parameter values that have been assigned since the time of the most-recent
archive.

For guidance, use the copies of the configuration file that you create at the
time of each archive. However, do not blindly set all current parameters to
the same values as were recorded at the last archive. Pay attention to three
different groups of parameters:

= Shared-memory parameters
= Mirroring configuration parameters
= Device parameters

Verify that your current shared-memory parameters are set to the maximum
value assigned since the level-0 archive. For example, if you decreased the
value of USERS from 45 to 30 sometime since the level-0 archive, you must
begin the restore with USERS set at 45, and not at 30, even though the config-
uration file copy for the last archive might have the value of USERS set at 30.
(If you do not have a record of the maximum value of USERS since the level-
0 archive, set the value as high as you think necessary. You might need to
reassign values to BUFFERS, LOCKS, and TBLSPACES as well, since the
minimum values for these three parameters are based on the value of USERS.)

Verify that your current mirroring configuration matches the configuration
that was in effect at the time of the last level-0 archive. Since Informix recom-
mends that you create a level-0 archive after each change in your mirroring
configuration, this should not be a problem. The most critical parameters are
the mirroring parameters that appear in the OnLine configuration file,
MIRRORPATH and MIRROROFFSET.

IBM Informix OnLine Database Server Administrator's Guide

Initiate Data Restore from Offline Mode

Verify that all raw devices that have been in use since the level-0 archive are
available. For example, if you dropped a dbspace or mirroring for a dbspace
since your level-0 archive, you must ensure that the dbspace or mirror chunk
device is available to OnLine when you begin the restore. If the tbtape
process attempts to write pages to the chunk as it reads the level-0 archive
page, and cannot find the chunk, the restore will not complete. Similarly, if
you added a chunk since your last archive, you must ensure that the chunk
device is available to OnLine when it begins to roll forward the logical logs.

Initiate Data Restore from Offline Mode

You can only perform the data restore while OnLine is in offline mode.

To initiate a data restore from DB-Monitor, select the Archive menu, Restore
option.

To initiate a data restore from the command line, execute tbtape -r.

Mount Level-0 Archive Tape

Throughout the restore procedure, OnLine provides you with directions
through prompts that appear on the DB-Monitor screen or on the terminal, if
you executed tbtape -r.

The first prompt directs you to mount the level-0 archive tape.

Mount the tape and verify that the tape drive is online. OnLine prompts you
to press RETURN when you are ready to proceed.

Data Consistency, Recovery, and Migration ~ 4-49

Verify Current Configuration

4-50

Verify Current Configuration

As its first task, tbtape reads the root dbspace reserved pages from the first
block of the tape. These pages contain both the configuration file values at the
time of the level-0 archive and a complete listing of all dbspaces and chunks
that were defined at the time. The tbtape process verifies that the current
configuration is compatible with the configuration information contained on
the tape. As part of the verification, tbtape displays the list of chunks to the
screen. Press F3 or CTRL-B to continue.

The following message appears:
Verifying physical disk space, please wait.

If the two configurations are not compatible (for example, if the value of
USERS on the tape is 45 and the value of USERS in the current configuration is
30), the restore fails and error messages are returned to the user.

Prompt for Logical Log Backup

If tbtape confirms the configuration, it also determines if any logical log files
are available on disk. If so, tbtape prompts you if you want to back up these
logical log files.

You must back up the logical log files to tape to roll them forward after the
archive portion of the restore is complete. If you do not back up the files now,
the restore procedure overwrites the log file pages and the data is lost.

Enter a Y to indicate that you want to back up any logical log files and mount
a tape on the logical log backup tape device, LTAPEDEV. Verify that the tape
drive is online and press RETURN. If necessary, thtape prompts for additional
tapes.

The tbtape process backs up each logical log file on disk, whether the log file
status is unreleased or backed up (U or U-B). Consequently, this backup
might provide you with an additional copy of a specific logical log file.

This redundancy is harmless and serves as a form of insurance. In any
rollforward, you must have all tapes available, in sequence. Thus, an extra
copy of the tapes gains you a fall-back in case of failure or loss and costs you
only the time of the backup.

IBM Informix OnLine Database Server Administrator's Guide

Write Each Archive Page to Disk

Write Each Archive Page to Disk

It might be that your configuration defines both TAPEDEV and LTAPEDEV as
the same device. Since this is possible, tbtape prompts for you to mount the
level-0 archive tape and to press RETURN to continue the restore. If your tape
is already mounted on the archive device, simply press RETURN.

As the restore begins, tbtape reads each page of data from the archive tape(s)
and writes the page to the address contained in the page header.

The tbtape process prompts for additional tapes if the level-0 archive is
contained in more than one volume.

After the level-0 archive is restored, tbtape prompts for additional levels. You
must be aware of the archive levels required for your specific restore. If you
do not have any other archive levels to restore, or if for some reason you wish
to stop at a specific level, respond Nto indicate no at the following prompt:

Do you have another |evel of tape to restore?

Initialize Shared Memory

After the last archive tape is restored, the tbinit process clears the physical
log to prevent fast recovery activity as it initializes shared memory. You will
see the following message:

Initializing, please wait ...

Roll Forward Logical Logs

The tbtape process automatically prompts you to indicate if you want to
restore any logical logs. This same prompt tells you the logical log ID number
at which the rollforward should begin:

Is there a logical log to restore? (y/n)
Roll forward should start with | og nunber 28

You must rely on your own tape-labelling system to direct you to the specific
tape that contains this logical log file. All logical log files must be rolled
forward in sequence. If this tape is not available, you cannot roll forward any
log files.

If you respond with a vy, for yes, OnLine prompts you to mount the tape.

Data Consistency, Recovery, and Migration 4-51

OnLine Is Quiescent

4-52

Mount the correct tape on LTAPEDEV. Verify that the tape drive is online and
press RETURN.

If you do not mount the correct tape, tbtape notifies you of the error and
prompts again for the correct tape.

The tbinit process rolls forward the records contained in the logical log
backup tapes.

The tbtape process prompts for new tapes as needed until all the log files are
processed.

OnLine Is Quiescent

After the rollforward is complete, tbinit returns controls at the DB-Monitor
Archive menu or tbtape exits gracefully and returns the system prompt.
OnLine is now in quiescent mode.

Database and Table Migration

The following situations might require you to move a database or selected
data:

= A move from a development environment to a production
environment

= A move to a different hardware platform

= A need to distribute an application to users

= A desire to reorganize the OnLine disk space configuration

= A need to switch to a different database server

OnLine utilities support four migration methods:

= UNLOAD statement /dbschema/LOAD statement
= UNLOAD statement /dbschema/dbload

s dbexport/dbimport

= tbunload/tbload

IBM Informix OnLine Database Server Administrator's Guide

Database and Table Migration

The correct method for you depends on your processing environment and
what you want to move (a database, selected tables, or selected columns from
selected tables). The table displayed in Figure 4-9 compares the advantages
and different characteristics of each migration method. The sections that
follow describe and compare each migration method in detail. (Refer to
Chapter 7, “Utilities,” for a complete discussion of each OnLine utility. The
LOAD and UNLOAD statements are documented in the DB-Access User’s

Manual.)
Figure 4-9
Quick comparison of migration methods

UNLOAD/ UNLOAD/ dbexport/ tbunload/
LOAD dbload dbimport tbload

Performance Moderate Moderate Moderate Fast

Ease of use Input must You must No initial No initial
adhere to build input requirements requirements
format file

Flexibility No Yes Yes Yes

built into

options

Ability to Modify the Modify .sql No ability to No ability to

modify data ASCII file file modify modify

schema created by
dbschema

Granularity of Aportionofa Aportionofa Database only Table or

data fielduptoa fielduptoa database
complete complete table
table

Output Must have Must have Disk or Tape Tape only

destination enough disk enough disk

space for data

space for data

Data Consistency, Recovery, and Migration ~ 4-53

Description of Migration Methods

4-54

Description of Migration Methods

This section provides an overview of how each data migration method
works. Figure 4-10 on page 4-56 illustrates the four migration methods. This
section does not attempt to compare the methods. Comparisons and
contrasts begin on page 4-57.

Refer to Chapter 7, “Utilities,” for a complete discussion of each OnLine
utility. The LOAD and UNLOAD statements are documented the DB-Access
User’s Manual.

UNLOAD/dbschema/LOAD

The DB-Access UNLOAD statement writes the rows retrieved in a SELECT
statement to a delimited ASCII file. A parameter in the UNLOAD statement
enables you to specify a field-delimiting character for the ASCII file. The
UNLOAD statement creates the ASCII input file of migration data.

The database server utility dbschema writes the SQL statements needed to
replicate the specified database or table to an ASCII file. The dbschema
output file can be modified with a system editor or run as is to create the
database or table that will receive the migration data.

The DB-Access LOAD statement inserts data from one or more of the
delimited ASCII input files created by UNLOAD into one or more tables
created from a dbschema output file.

UNLOAD/dbschema/dbload

The UNLOAD statement and dbschema utility perform the same preparation
tasks in this method as described in the preceding paragraph. The database
server utility dbload takes one or more ASCII input files created by UNLOAD
and inserts the data into one or more specified tables created from a
dbschema output file. The dbload utility inserts the data as directed by a
command file that is created by the user. The user can specify additional
instructions at the command line when dbload is executed.

IBM Informix OnLine Database Server Administrator's Guide

Description of Migration Methods

dbexport/dbimport

The dbexport and dbimport utility pair operates only on databases, not on
tables.

The dbexport utility creates, on disk or on tape, a directory that contains an
ASCII file of data for each table in the specified database. Additionally,
dbexport creates on disk or on tape an ASCII file of SQL data definition
language (DDL) statements and accounting information necessary to re-
create the database on another Informix database server.

The dbimport utility takes input from a directory or from tape. It uses the
ASCII file of data definition statements (referred to as the .sql file) to create
the database. Specific database characteristics can be specified as part of the
dbimport command.

After the database is created, dbimport populates the database with the data
contained in the ASCII files stored within the specified directory or on the
tape.

tbunload/tbload

The tbunload utility writes to tape data from the specified database or table
in binary, disk-page units. The tbload utility takes as input a tape created by
the tbunload utility. With just the information contained on the tape, tbload
can re-create the database or the table. Because the data is written in page-size
units, migration requires that the two machines use the same page size
(specified as BUFFSIZE in the configuration file).

Data Consistency, Recovery, and Migration ~ 4-55

Description of Migration Methods

‘ Figure 4-10
UNLOAD/dbschema/LOAD Description of

migration methods
UNLOAD
— | ASClldata

dbschema
—> SQL statements

UNLOAD/dbschema/dbload

Dataina
} LOAD table

Command-line
UNLOAD options

m—p | ASCII data ——
Data in a

dbschema } dbload ’ table

—> SQL statements —~—

Command file

dbexport/dbimport

dbexport ’ ASCII data
- }dbimport '> Database
.sql file of data data
_> definition
statements

tbunload/tbload

Binary page-
sized units on
tape

tbunload '

Table or
}tbload _> database

data

4-56 |IBM Informix OnLine Database Server Administrator's Guide

Which Migration Method Is Best for You?

Which Migration Method Is Best for You?

Each of the migration methods imposes constraints of one form or another on
the user. The decision trees shown in Figure 4-11 through Figure 4-14
summarize the choices among the migration methods.

After you determine which method best suits your needs, refer to Chapter 7,
“Utilities,” for detailed instructions for using each utility. Refer to the
DB-Access User’s Manual for information about the LOAD and UNLOAD
statements.

Figure 4-11

First decision tree
summarizing the
choices among
Do you want to move data in No . OnLine migration
database units? See Figure 4-12 methods

Which OnLine migration method is best for you?

ah

Yes

<_

Do you want to keep the current No See Figure 4-13
database schema?
Yes

4_

Are you moving to another No dbexport/ dbimport
OnLine?

a

Yes

<_

Does the host machine have the No P dbexport/ dbimport
same page size? P P

an

Yes ¢

tbunload/ thload

Data Consistency, Recovery, and Migration ~ 4-57

Which Migration Method Is Best for You?

4-58

You do not want to move data in database units.

Do you want to move the data in No
table units?

)

Use either LOAD
or dbload.
See Figure 4-14.

Yes +
No

Do you want to keep the current ’

table schema?

)

Use either LOAD
or dbload.
See Figure 4-14.

Yes $

. . N
Are you moving to another OnLine L’

database server?

)

Use either LOAD
or dbload.
See Figure 4-14.

Yes

Does the host machine have the No
same page size? ’

)

Use either LOAD
or dbload.
See Figure 4-14.

Yes ¢

thunload/ thload

IBM Informix OnLine Database Server Administrator's Guide

Figure 4-12
Second

decision tree
summarizing the
choices among
OnLine migration
methods

Which Migration Method Is Best for You?

. Figure 4-13
You want to modify the current database schema. Third
decision tree
summarizing the
choices among
OnLine migration
methods

Do you want to write data directly \ yag _
to tape? dbexport/dbimport

v

Use dbexport/dbimport, LOAD, or dbload. To choose between
LOAD and dbload, see Figure 4-14.

In the choice between LOAD or dbload, the trade-off is ease-of-use and speed
versus flexibility. The advantage of the dbload utility is flexibility. The price
of this flexibility is time spent learning about and creating the dbload
command file. Most users find that if they do not need the flexibility of
dbload, they prefer the LOAD statement for its simplicity. When you use the
LOAD statement to load data from an ASCII file into a table, all you do is run
it. LOAD tends to be much faster than dbload.

When you use the dbload utility, you must create the dbload command file.
The command file maps data from each ASCII input file into fields that are
inserted into specific tables in the database. The command file can drastically
reorder and rearrange input data as it is entered into the specified table.

In addition, dbload command-line options provide you with these
possibilities:

s Check the syntax of the command-file statements

= Suspend table locking during the insert

= Ignore the first x number of input records from the file

= Force a commit after every x number of records

= Terminate the load after x number of bad records

Data Consistency, Recovery, and Migration ~ 4-59

Using UNLOAD with LOAD or dbload

Figure 4-14
Fourth
decision tree

Yes UNLOAD/ summarizing the

Do you need to commit any inserts dbschema/ choices among
during the load? dbload OnLine migration
methods

"y

How to choose between LOAD and dbload

UNLOAD/
dbschema/
LOAD

Is the ASCII input file format
acceptable to LOAD?

No*

: Yes
Can you use sed, awk, or an] Yes UNLOAD/

editor to easily reformat the dbschema/
ASCII input files? LOAD

"y

UNLOAD/dbschema/dbload

Using UNLOAD with LOAD or dbload

This section describes the steps you take when you migrate data using either
of these two methods:

= UNLOAD /dbschema /LOAD

= UNLOAD /dbschema /dbload
Refer to page 4-53 for an overview of each method. Refer to the DB-Access
User’s Manual for instructions and syntax for UNLOAD and LOAD. Refer to

page 7-32 for instructions and syntax for dbschema. Refer to page 7-15 for
instructions and syntax for dbload.

4-60 IBM Informix OnLine Database Server Administrator's Guide

Using UNLOAD with LOAD or dbload

Create and Edit the Schema File First

Use dbschema to create a schema file for the database or table that will
receive the data, if it does not yet exist.

After the schema file is created, you can edit the file with a system editor. By
editing the schemafile, you can change access privileges, object (table, index,
or view) ownership, lock mode, or initial and next extent sizes. Otherwise, all
privileges and ownership remain unchanged.

The dbschema utility gives all SERIAL fields included in CREATE TABLE state-
ments a starting value of 1. If this is not acceptable, you must edit the schema
file.

Verify Adequate Disk Space for Data

Use the UNLOAD statement to unload a table or specific columns in a table to
one or more ASCII files.

You specify the output filename for each ASCI| file as part of the UNLOAD
statement syntax. Ensure that adequate disk space is available to store the
ASCII files. Otherwise, an error is returned.

Move Files

Move the ASCII input files and the schema file to the new host machine (or
to the new directory if you are exporting to an IBM Informix SE database
server).

Create the New Database or Tables
If the new database or table does not yet exist, create it.

To create a database, either run the schema file or execute the CREATE
DATABASE statement. To create a table, either run the schema file or execute
the CREATE TABLE statement.

Users might need to modify their DBPATH environment variable setting to
reflect the new database location.

Data Consistency, Recovery, and Migration 4-61

Using dbexport and dbimport

4-62

Use LOAD or dbload to Populate the Tables

If you plan to use the LOAD statement to load data from an ASCIlI file into a
table, load the data now.

If you plan to use the dbload utility to load data, refer to page 7-21 for explicit
instructions for creating the command file and loading the data.

Using dbexport and dbimport

This section describes the steps you take when you migrate data using the
dbexport and dbimport utilities.

Refer to page 4-53 for an overview of this method. Refer to page 7-5 for
instructions and syntax for dbexport. Refer to page 7-10 for instructions and
syntax for dbimport.

To run dbexport, you must be logged in as user informix or have DBA
privileges.

During the data export, OnLine attempts to lock the database in Exclusive
mode. If the lock can be obtained, users are unable to access data. If the lock
cannot be obtained, the program ends with a diagnostic message.

When you execute the dbexport command to export data from a database,
you specify the destination of the data and the .sql file of data definition
statements. You have the following options:

= Write both data files and .sql file on tape.

= Write both data files and .sql file on disk.

= Write data files on tape and .sql file on disk.
These options enable you to place the .sgl file on disk where it can be easily

edited if you wish to modify the SQL data definition statements that define
the database.

IBM Informix OnLine Database Server Administrator's Guide

Using tbunload and thload

The .sql file does not contain all table information available from the existing
database. You can modify the .sql file to add the following information:

= Initial and next extent values for a table (the default value of eight
pages is used)

= Lock mode for atable (the default value of page-level locking is used)

= Dbspace where a table should reside

= Blobspace where a blob column should reside

If you export a database that stores blobs in a blobspace, you must edit the
.sql file to include the blobspace name in the CREATE TABLE statement.

Run dbimport when you are ready to re-create and populate the exported
databases. (During the import, page-level locking is used unless otherwise
specified in the .sgl file.)

The dbimport command-line options enable you to do these things:

= Turn logging on for the imported database.
= Specify the new database to be created as ANSI-compliant.
= Specify the dbspace where the database is to be created.

Using tbunload and tbload

This section describes how you migrate data using the tbunload and tbload
utilities.

Refer to page 4-53 for an overview of this method. Refer to page 7-107 for
instructions and syntax for tbunload. Refer to page 7-47 for instructions and
syntax for tbload.

To run tbunload or tbload, you must be logged in as user informix or have
DBA privileges. You must run both utilities from the current host machine.

Data Consistency, Recovery, and Migration ~ 4-63

Using tbunload and thload

tbunload

The tbunload utility can unload data more quickly than either dbexport or
the UNLOAD command because it copies the data in binary and in page-sized
units. However, this places some constraints on its use:

= tbunload writes data to tape only.

= You must load the tape written by tbunload onto a machine with the
same page size as the original machine.

= You must load the data on the tbunload tape into a database or table
managed by OnLine.

= When you unload a complete database, ownership of all database
objects (such as tables, indexes, and views) cannot be modified until
after the database is unloaded.

» thbunload unloads page images. If you load the pages to another
machine that stores numeric data types differently than your current
machine (for example, with the most significant byte last instead of
first), the contents of the data page could be misinterpreted.

= tbunload does not carry over access privileges or synonyms that
were defined on the original tables.

tbload

The tbload utility performs faster than the dbimport, dbload, or LOAD
options. In exchange for this higher performance, the following five
constraints exist:

= tbload can only create a new database or table; you must drop or
rename an existing database or table of the same name before tbload
is run. (tbload prompts you to rename blobspaces during execution,
if desired.)

= tbload locks the database or table exclusively during the load.

= When you load a complete database, the user executing tbload
becomes the owner of the database.

4-64 |BM Informix OnLine Database Server Administrator's Guide

Migrating Data from OnLine to SE

= tbload creates a database without logging; you must initiate logging
after the database is loaded, either through DB-Monitor or with the
tbtape utility.

= When you use tbload to load a table into a logged database, you
must turn logging off for the database during the operation.

Migrating Data from OnLine to SE

This section describes the information you need if you are migrating an
OnLine database to an IBM Informix SE database server.

Use the dbexport utility to prepare the data. Refer to page 7-5 for instructions
and syntax for dbexport. Refer to page 4-53 for an overview of the
dbexport/dbimport utility pair.

Use a system editor to remove the following OnLine specifics from CREATE
TABLE statements included in the .sql file created by dbexport:

= Initial and next extent sizes

s Dbspace and blobspace names

= Lock modes

= VARCHAR, BYTE, and TEXT columns
Refer to the IBM Informix SE Administrator’s Guide for detailed instructions
about using dbimport to migrate the prepared OnLine data. After you
successfully migrate the data to IBM Informix SE, ensure that the application

developers are aware of the differences between OnLine and IBM Informix
SE.

Three SQL statements contain syntax that only OnLine recognizes:

m SET CONSTRAINTS statement
s SET ISOLATION statement
s SET LOG statement

Three SQL statements contain extensions that only OnLine recognizes:

s ALTER TABLE
= CREATE DATABASE
= CREATE TABLE

Data Consistency, Recovery, and Migration ~ 4-65

Migrating Data from SE to OnLine

4-66

For more information about the differences between the two database servers
and their interpretation of SQL, refer to IBM Informix Guide to SQL: Reference.

Migrating Data from SE to OnLine

This section describes the information you need if you are migrating an
IBM Informix SE database to an OnLine database server.

Use the IBM Informix SE dbexport utility to prepare the data and the OnLine
dbimport utility to load the data. Refer to the IBM Informix SE Administrator’s
Guide for further information about preparing the data for migration to
OnLine. Refer to page 4-53 for an overview of the dbexport/dbimport utility
pair.

Before you execute dbimport, you might wish to edit the .sql file created by
dbexport to include OnLine information.

The .sql file does not contain the following table information that you might
wish to specify for your OnLine databases and tables:
s Database logging modes

= Initial and next extent values for a table (the default value of eight
pages is used)

= Lock mode for atable (the default value of page-level locking is used)
= Blobspace where TEXT or BYTE data types should reside
= Dbspace where the tables should reside

Run dbimport when you are ready to re-create and populate the exported

databases. (During the import, page-level locking is used unless otherwise
specified in the .sgl file.)

The dbimport command-line options enable you to do these things:

= Turn logging on for the imported database.
= Specify the new database to be created as ANSI-compliant.
= Specify the dbspace where the database is to be created.
After you successfully migrate the database to OnLine, ensure that the appli-

cation developers are aware of the differences between OnLine and
IBM Informix SE.

IBM Informix OnLine Database Server Administrator's Guide

For more information about the differences between the two database servers
and their interpretation of SQL, refer to IBM Informix Guide to SQL: Reference.

Migrating Data from SE to OnLine

4-68 |BM Informix OnLine Database Server Administrator's Guide

How to Improve Performance

InThisChapter 5-3
Disk Layouto 5-4
Optimize Blobspace Blobpage Size . . Ce e 5-5
tbcheck -pB and thcheck -pe Utility Commands e 5-5
Blobpage Average Fullness. 5-7
Apply Effective Criteria. 5-8
Eliminate User-Created Resource Bottlenecks. 5-8
When Is Tuning Needed?. 510
% Cached Fields 510
ovtbls, ovlock, ovuser, and ovbuff F|elds - R A |
Bufsize Pages/IO Fields. 51
Shared-Memory Buffers 513
When Is Tuning Necessary? 513
How Is Tuning Done? 513
Shared-Memory Resources 514
When Is Tuning Necessary? 514
How Is TuningDone? 515
Log Buffer Size . 515
LoggingStatus 515
How Is Tuning Done? 516
Page-Cleaner Parameters. 517
Efficient Page Cleaning 517

How Is TuningDone? 519

5-2

Checkpoint Frequency .
Performance Tradeoffs

How Is Tuning Done?.

Psort Parallel-Process Sorting Package .

How Psort Works .
TuningPsort.
Psort and Shared Memory .

SPINCNT Configuration Parameter .

IBM Informix OnLine Database Server Administrator's Guide

5-20
5-20
5-21
5-22
5-22
5-23
5-24

5-24

In This Chapter

With each OnLine release, Informix engineers incorporate new code that
increases processing efficiency, reduces overhead, and improves perfor-
mance. This effort to tune the OnLine code has two consequences for you:

= The OnLine database server runs faster.
= OnLine administration requires less performance tuning.

The information in this chapter assumes that your application has been
written as efficiently as possible. (Refer to IBM Informix Guide to SQL: Tutorial.)
Performance gains from tuning are not dramatic, since code enhancements
have built performance gains directly into the IBM Informix OnLine product.
However, incremental benefits can be realized with careful adjustments
tailored to your specific environment.

In this OnLine release, you gain the greatest improvements in performance if
you focus your attention on managing disk space layout and eliminating
problems that are unintentionally created by users. The guidelines that you
should follow are clear-cut and easy to apply, regardless of your application
design. Three topics fall into this first tier of performance issues:

= Placing databases, tables, and logs on disk (page 5-4)
= Optimizing blobspace blobpage size (page 5-5)
= Eliminating user-created resource bottlenecks (page 5-8)

The second tier of performance improvements falls into the more abstract
category of performance tuning. Tuning guidelines vary, depending both on
your hardware and your application. Trade-offs arise that you alone can
evaluate, based on your environment. Informix can describe the reasons for
the trade-offs and the possible advantages of different tunings; however, it
remains your responsibility to consider the needs and desires of your users
and to select the correct approach.

How to Improve Performance 5-3

Disk Layout

5-4

Performance-tuning issues are addressed as six topics in this chapter:

= When is tuning needed? (page 5-10)

s Shared-memory buffers (page 5-13)

= Shared-memory resources (page 5-14)

= Log buffer size (page 5-15)

» Page-cleaner parameters (page 5-17)

= Checkpoint frequency (page 5-20)
If you are running OnLine on a multiprocessor machine, two multiprocessor-
specific features are available:

= Psort parallel-process sorting package (page 5-22)

= SPINCNT configuration parameter (page 5-24)

Disk Layout

Possibly the greatest gains in OnLine performance accrue from strategic disk
layout. It is not a simple matter to correct improper or poorly planned disk
layout after you have configured and initialized OnL.ine disk space. For this
reason, disk layout issues are addressed in Chapter 1 as part of your initial
configuration planning. Each time that you create a blobspace or dbspace,
you should review the basic principles described on page 1-43.

OnLine has an improved method of constructing indexes. Data is sorted
before the index is built. The sort uses space in /tmp (all temporary tables and
indexes are build in the root dbspace). The use of /tmp decreases as the index
is built so that, as the index grows, the need for sort space decreases.

You can improve performance by strategic placement of the UNIX directories
that OnLine uses for its intermediate, sort writes. You can define the directory
that should be used for this purpose by defining the environment variable
DBTEMP. If DBTEMP is not set, OnLine uses the /tmp directory.

IBM Informix OnLine Database Server Administrator's Guide

Optimize Blobspace Blobpage Size

Optimize Blobspace Blobpage Size

Familiarize yourself with the OnLine approach to blobspace blob storage
before you begin this section. Refer to page 2-148 and page 2-149 for
background information.

When you are evaluating blobspace storage strategy, you can measure
efficiency by two criteria:

= Blobpage fullness
= Blobpages required per blob

Blobpage fullness refers to the amount of data within each blobpage. Blobs
stored in a blobspace cannot share blobpages. Therefore, if a single blob
requires only 20 percent of a blobpage, the remaining 80 percent of the page
is unavailable for use. However, you want to avoid making the blobpages too
small. When several blobpages are needed to store each blob, you can
increase the overhead cost of storage. For example, more locks are required
for updates since a lock must be acquired for each blobpage.

tbcheck -pB and tbcheck -pe Utility Commands

To help you determine the optimal blobpage size for each blobspace, use two
OnLine utility commands: tbcheck -pB and tbcheck -pe.

The tbcheck -pB command lists the following statistics for each table (or
database):

= The number of blobpages used by the table (or database) in each
blobspace

= The average fullness of the blobpages used by each blob stored as
part of the table (or database)

The tbcheck -pe command can provide background information about the
blobs stored in a blobspace:

= Complete ownership information (displayed as database:owner.table)
for each table that has data stored in the blobspace chunk.

= The number of OnLine pages used by each table to store its
associated blob data.

How to Improve Performance 5-5

tbcheck -pB and thcheck -pe Utility Commands

Refer to page 7-38 for tbcheck -pB and tbcheck -pe syntax information.

The tbcheck -pB command displays statistics that describe the average
fullness of blobpages. These statistics provide a measure of storage efficiency
for individual blobs in a database or table. If you find that the statistics for a
significant number of blobs show a low percentage of fullness, OnLine might
benefit from resizing the blobpage in the blobspace.

The following example retrieves storage information for all blobs stored in
the table sriram.catalog in the stores5 database:

tbcheck -pB stores5:sriram catal og

Figure 5-1 shows the output of this command.

Figure 5-1
o Blobspace
BLOBSpace Report for stores5:sriram catal og usage
Total pages used by table 7 report
from
BLOBSpace usage: thcheck -pB
Space Page Percent Ful |
Nare Nurber Pages 0- 25% 26-50% 51-75% 76-100%
bl obPI C 0x300080 1 X
bl obPI C 0x300082 2 X
Page Size is 6144 3
bspcl 0x2000b2 2 X
bspcl 0x2000b6 2 X
Page Size is 2048 4

Space Nane is the name of the blobspace that contains one or more blobs
stored as part of the table (or database).

Page Nunber is the starting address in the blobspace of a specific blob.
Pages is the number of OnLine pages required to store this blob.

Percent Full isa measure of the average fullness of all the blobpages that
hold this blob.

Page Si ze is the size in bytes of the blobpage for this blobspace. (Blobpage
size is always a multiple of the OnLine page size.)

5-6 IBM Informix OnLine Database Server Administrator's Guide

Blobpage Average Fullness

The example output indicates that four blobs are stored as part of the table
sriram.catalog. Two blobs are stored in the blobspace blobPIC in 6144-byte
blobpages. Two more blobs are stored in the blobspace bspcl in 2048-byte
blobpages.

The summary information that appears at the top of the display, Tot al
pages used by tabl e, is asimple total of the blobpages needed to store
blobs. The total says nothing about the size of the blobpages used, the
number of blobs stored, or the total number of bytes stored.

The efficiency information displayed under the Percent Ful | heading is
imprecise, but it can alert an administrator to trends in blob storage. To
understand how the fullness statistics can improve your blob storage
strategy; it is helpful to use the example in Figure 5-1 to explain the idea of
average fullness.

Blobpage Average Fullness

The first blob listed in Figure 5-1 is stored in blobPIC and requires one 6144-
byte blobpage. The blobpage is 51 to 75 percent full, meaning that the
minimum blob size must be greater than 50 percent of 6144 bytes, or 3072
bytes. The maximum size of this blob must be less than or equal to 75 percent
of 6144 bytes, or 4508 bytes.

The second blob listed under blobspace blobPIC requires two 6144-byte
blobpages for storage, or a total of 12,288 bytes. The average fullness of all
allocated blobpages is 51 to 75 percent. Therefore, the minimum size of the
blob must be greater than 50 percent of 12,288 bytes, or 6144 bytes. The
maximum size of the blob must be less than or equal to 75 percent of 12,288
bytes, or 9216 bytes. Notice that average fullness does not mean that each
page is 51 to 75 percent full. A calculation would yield 51 to 75 percent
average fullness for two blobpages where the first blobpage is 100 percent
full and the second blobpage is 2 percent full.

Next, consider the two blobs in blobspace bspcl. These two blobs appear to
be nearly the same size. Both blobs require two 2048-byte blobpages and the
average fullness for each is 76 to 100 percent. The minimum size for these
blobs must be greater than 75 percent of the allocated blobpages, or 3072
bytes. The maximum size for each blob is slightly less than 4096 bytes
(allowing for overhead).

How to Improve Performance 5-7

Apply Effective Criteria

5-8

Apply Effective Criteria

Looking at the efficiency information for blobspace bspcl in Figure 5-1, an
administrator might decide that a better blob-storage strategy would be to
double the blobpage size from 2048 bytes to 4096 bytes. (Recall that blobpage
size is always a multiple of the OnLine page size.) If the administrator made
this change, the measure of page fullness would remain the same but the
number of locks needed during a blob update or modification would be
reduced by half.

The efficiency information for blobspace blobPIC reveals no obvious
suggestion for improvement. The two blobs in blobPIC differ greatly in size
and there is no optimal storage strategy. In general, blobs of similar size can
be stored more efficiently than blobs of different sizes.

Eliminate User-Created Resource Bottlenecks

OnLine manages limited resources such as locks, latches, buffers, and log
space. Users can adversely affect OnLine performance by inadvertently
creating resource bottlenecks in an otherwise efficiently tuned OnLine
system. (You can monitor the shared-memory resources being held by user
processes by executing tbstat -u. Refer to page 3-86 or page page 7-99.)

Knowledgeable users are able to avoid activities that can slow OnLine perfor-
mance for everyone. As administrator, you should encourage users to follow
these four guidelines:

= Do not leave a transaction open without committing or rolling back within
a reasonable period of time.

If a user leaves a transaction open, the resources held by the database
server process are unavailable to other users. In addition, if the trans-
action is left open for an extended period, this user action can
become responsible for a long transaction error.

= Do not stop a process using job control unless you are certain you can
terminate the job.

A stopped job does not release resources held by the database server
process. These resources might remain unavailable to other users. If
an application process is stopped while OnLine is engaged in data-
base activity on its behalf, serious concurrency delays can result.

IBM Informix OnLine Database Server Administrator's Guide

Eliminate User-Created Resource Bottlenecks

Do not perform mass updates on frequently accessed tables.

During an update, the row must be locked. Mass updates to a table
are best performed with table-level locking to reduce locking over-
head. However, requesting an update with table-level locking denies
access to the table to all users except those using Dirty Read isolation.
Users should balance their desire to perform a large transaction
against the effect their work has on concurrency. Mass updates
should always be timed for less active times. If the update must
occur while other users need access to the table, row-level locking is
appropriate. Table-level locking is only appropriate if the table is not
needed by other users during the transaction.

Consider the access problems that might result before you specify a
restrictive isolation level in an application.

Users should be aware that the isolation or locking level that they
select for their processing can affect other users. Isolation and lock-
ing levels should be selected to be consistent with the concurrency
needs of the complete OnLine environment.

How to Improve Performance 5-9

When Is Tuning Needed?

5-10

When Is Tuning Needed?

As administrator, attempt to follow as closely as possible the guidelines for
disk layout, blobpage sizing, and user education. As part of your daily
routine, monitor OnLine activity to become familiar with what can be
considered normal operation. (Refer to page 3-83.) In the course of your
monitoring, pay particular attention to several fields that could indicate a
need for tuning. The field values that might indicate a need for tuning are
listed here, along with a cross-reference to direct you to the appropriate
tuning discussion in this chapter.

% Cached Fields

Use the fields that report read- and write-caching percentages to indicate a
possible need for tuning.

= The cached-read percentage refers to the number of reads done from
memory compared to the number of reads done from disk.

= The cached-write percentage refers to the percentage of writes that are
performed to the shared-memory buffer compared to the number of
writes to disk.

These caching percentages are reported by the DB-Monitor Status menu,
Profile option or as part of the tbstat -p or tbstat -P output: %cached is the
cached percentage. The %cached field appears twice in both the DB-Monitor
and tbstat display.

If you use DB-Monitor, the cached-read percentage is the third field on the top
row of statistics. The cached-write percentage is the left-most field on the top
row, which is also labelled %cached.

If you use tbstat -p or tbstat -P, the cached-read percentage is the first occur-
rence of the field %cached. The cached-write percentage is the second
occurrence of the field %cached.

If the cached-read percentage is less than 95 percent or the cached-write
percentage is less than 82 percent, you might want to consider retuning.

Refer to page 5-13 for more details about using these fields to adjust the
number of shared-memory buffers.

IBM Informix OnLine Database Server Administrator's Guide

ovtbls, ovlock, ovuser, and ovbuff Fields

Refer to page 5-17 for more details about using these fields to modify the
values of the page-cleaner parameters.

ovtbls, ovlock, ovuser, and ovbuff Fields

Use the fields that report unmet database server requests for shared-memory
resources to indicate a possible need for tuning. The unmet requests are
reported by the DB-Monitor Status menu, Profile option or as part of the
tbstat -p or tbstat -P output:

ovtbls is the number of times that an OnLine user process tried to
acquire an entry in the tblspaces table when none was
available. That is, the TBLSPACE limit defined in the configu-
ration file was reached.

ovl ock is the number of times that an OnLine user process tried to
acquire an entry in the lock table when none was available.
That is, the LOCKS limit defined in the configuration file was
reached.

ovuser is the number of times that an OnLine user process tried to
acquire an entry in the users table when none was available.
That is, the USERS limit defined in the configuration file was
reached.

The tbstat output contains a fourth field that reports on unmet requests:
ovbuf f is the number of times that an OnLine user process tried to

acquire a shared-memory buffer when none was available.

If the value in the ovt bl s, ovl ock, or ovuser field is positive, refer to
page 5-14 for a discussion of tuning guidelines. If the value in the ovbuf f
field is positive, refer to page 5-13.

Bufsize Pages/IO Fields

Use the fields that report the size of the physical and logical log buffers and
the fields that report the number of pages written from the buffer to disk to
indicate a possible need for tuning.

How to Improve Performance 5-11

Bufsize Pages/IO Fields

Buffer size and the amount of 170 per write are reported by the DB-Monitor
Status menu, Logs option or as part of the tbstat -1 or tbstat -p output:

Buf si ze is the size of the physical or logical log buffer. The Buf si ze
field appears twice in the display: once for the physical log
buffer and once for the logical log buffer.

Pages/1 O isthe number of pages, on average, that are written to disk
with each 170 operation. The Pages/ | O field also appears
twice in the display: once for writes to the physical log and
once for writes to the logical log.

If the physical log value of Pages/ | Ois less than 90 percent of the value of
Buf si ze, you might be able to improve performance by adjusting the buffer
size. Refer to page 5-15 for more information.

5-12 IBM Informix OnLine Database Server Administrator's Guide

Shared-Memory Buffers

Shared-Memory Buffers

In general, you want to allocate shared-memory buffers to OnLine until you
no longer see an improvement in performance. However, shared memory is
rarely an unlimited resource. You must always weigh the positive effect of
increasing OnLine shared memory against negative effects that might be
experienced by other applications running on your host machine.

When Is Tuning Necessary?

Look at the cached-read and cached-write percentages for OnLine. (Refer to
page 5-10.) Ideally, the cached-read percentage should be greater than 95
percent and the cached-write percentage should be greater than 82 percent.

The tbstat -p or tbstat -P display also includes a field labelled ovbuf f , which
refers to “over buffers,” meaning the number of times that OnLine database
server processes tried to acquire a buffer when none was available. A low
positive number in this field might not necessarily indicate a need for tuning.
A high value is more indicative of a need for more buffers. If the value of
ovbuf f exceeds 50 or 60 within a 24-hour period, begin to monitor the field
over a fixed time interval. (Use tbstat -z to set all profile statistics to 0.) If it
appears that OnLine requests consistently exceed the BUFFERS value, you
should attempt to tune your configuration.

How Is Tuning Done?

You might be able to increase the cached percentages, up to a point, by
increasing the number of shared-memory buffers, specified as BUFFERS in the
configuration file. If OnLine was unable to defer writes to disk because of an
insufficient number of buffers, you should see an increase in the cached-write
percentage after you increase the number of buffers. If OnLine is forced to
read pages from disk because of an insufficient number of buffers, increasing
the value of BUFFERS should improve the cached-read percentage.

If you do not see an increase in caching after you increase the value of
BUFFERS, or if the increase is nominal, then the number of buffers allocated
might be considered adequate for your application. There is no benefit from
overallocating shared-memory buffers.

How to Improve Performance 5-13

Shared-Memory Resources

5-14

Important: Low caching percentages might reflect improperly tuned page-cleaning
parameters. If increasing the value of BUFFERS does not increase the caching
percentages, refer to page 5-17.

Refer to page 3-92 for more details about how to change the value of
BUFFERS.

Shared-Memory Resources

If database server processes are waiting for a limited number shared-memory
resources, you can improve performance by allocating more of the needed
resource. You can eliminate waiting for an entry in the locks, tblspaces, or
users table by increasing the value of TBLSPACES, LOCKS, or USERS in the
configuration file. However, each increase also increases the size of shared
memory, which is rarely an unlimited resource. You must always weigh the
positive effect of increasing OnLine shared memory against any negative
effects that might be experienced by other applications running on your host
machine.

When Is Tuning Necessary?

Look at the profile of OnLine activity. A low positive number in any one of
the three fields ovt bl s, ovl ock, or ovuser does not necessarily indicate a
need for tuning. A high value is more indicative of a need for more buffers.
If the value of ovbuf f exceeds 50 or 60 within a 24-hour period, begin to
monitor the field over fixed time intervals. (Use tbstat -z to set all profile
statistics to 0.) If it appears that OnLine requests consistently exceed the
BUFFERS value, you should attempt to tune your configuration.

IBM Informix OnLine Database Server Administrator's Guide

How Is Tuning Done?

How Is Tuning Done?

You can increase the number of shared-memory resources by increasing the
value of TBLSPACES, LOCKS, or USERS in the configuration file. If you increase
the value of USERS, you might need to also increase the value of TBLSPACES,
LOCKS, and BUFFERS, since the minimum values for all three of these param-
eters are based on the value of USERS. For further information about how to
change the value of these parameters, refer to the following pages:

TBLSPACES, page 3-113; LOCKS, page 3-112; and USERS, page 3-114.

Log Buffer Size

The optimal size for the physical and logical log buffers depends on your
environment. In general, the log buffers should be large enough to minimize
physical 170 writing to the logs on disk. However, the buffers should not be
so large that you have allocated shared-memory space that could be used
more efficiently for some other purpose.

A second consideration is the amount of data that is held in volatile memory.
This is a concern only if you are using buffered logging. The larger the log
buffer, the more log data that can be lost in the event of operating system
failure. Log data that is lost cannot be used during fast recovery. Therefore, if
several COMMIT records are left in the logical log buffer (database uses
buffered logging) and lost, you cannot recover these transactions after a
failure. Thus, if any of your OnLine databases use buffered logging, you
should weigh the benefits of increased buffer size against the disadvantages
of possible data loss in the event of operating system failure.

(The following paragraphs rely on information presented on page 5-11 that
explains the Buf si ze and Pages/ | Ofields and how to interpret their values.)

Logging Status

An additional consideration in the decision to resize the logical log buffer is
the complication of the database logging status. The logging status of the
database affects the logical log Pages/ | O value. If a database uses unbuf-
fered logging, the Pages/ | Ovalue is close to 1. If a database uses buffered
logging, the Pages/ | Ovalue should be very close to the value of Buf si ze.

How to Improve Performance 5-15

How Is Tuning Done?

5-16

How Is Tuning Done?

If the value of Pages/ | Ois 75 percent or more of Buf si ze, each write to the
disk is, on average, deferred until the buffer is almost full. (Since the value of
Pages/ | Ois an average, some writes might be closer to 100 percent of the
buffer. The logging status affects this value; see the preceding paragraph.)

In this case, you can try to further improve buffer efficiency by increasing the
size of the buffer to accommodate more data before each write.

If the value of Pages/ | Ois less than 75 percent of Buf si ze, writes to the disk
occur, on average, long before the buffer is fully used. In this case, you can try
to improve buffer efficiency by decreasing the size of the buffer to more
closely approximate the size of Pages/ | O Decreasing the size of the buffer
frees shared-memory space for other uses.

Refer to page 3-93 for further information about how to change the size of the
logical log or physical log buffer.

IBM Informix OnLine Database Server Administrator's Guide

Page-Cleaner Parameters

Page-Cleaner Parameters

In the discussion of page-cleaning tuning, it is especially true that your
hardware configuration and your application influence the values that are
best for your environment.

Familiarize yourself with the OnLine approach to page cleaning before you
begin this section. Refer to page 2-57 and page 2-58 for background infor-
mation about the LRU queues and their role in the page-cleaning process.

You can tune four page-cleaning parameters to affect performance:
CLEANERS The number of page cleaners
LRUS The number of LRU queue pairs

LRU_MAX_DIRTY The threshold percentage of modified buffers in the queue,
which when reached initiates page-cleaning activity (as
idle writes)

LRU_MIN_DIRTY The threshold percentage of modified buffers in the queue,
which when reached indicates the point at which page-
cleaning activity can be suspended

Efficient Page Cleaning

Traditionally, the effectiveness of page-cleaner activity has been measured by
the different types of writes performed. Idle writes occur when the page
cleaners wake by themselves to flush the LRU queues. Foreground writes occur
if the database server process must initiate page flushing. (Refer to page 2-75
for a description of the different types of writes that occur during OnLine
operation.) You can examine the types of writes that occur in your
environment by executing tbstat -F.

How to Improve Performance 5-17

Efficient Page Cleaning

5-18

You should still avoid foreground writes and LRU writes, displayed as Fg
Wites and LRU Wit es in the tbstat -F output. (Refer to page page 7-87.)
However, the introduction of OnLine LRU queued pairs (composed of FLRU
and MLRU queues) significantly reduces the likelihood of these write types.
(Refer to page 2-57 for an explanation of the FLRU and MLRU queues.)
Monitoring tbstat -F might not alert you that you can affect performance by
tuning the page-cleaning parameters.

Instead, you should be concerned with the cached-read and cached-write
percentages. Refer to page 5-10 for a definition of these cache percentages.

In the OnLine environment, at least two events initiate a flush of the shared
memory-buffer pool:

= The value of LRU_MAX_DIRTY is reached.
= A checkpoint occurs.

Before you decide to increase the efficiency of the page cleaners, you should
consider the implied trade-off between idle writes and chunk writes. If you
increase the frequency of idle writes performed during normal operation,
you can reduce the frequency of checkpoints (since the idle writes can
maintain an adequate supply of clean buffers). This tuning is often
considered to be advantageous since checkpoints are perceived as contrib-
uting to decreased performance. (OnLine suspends database server
processing during a checkpoint.) However, it is not always true that less-frequent
checkpoints guarantee improved performance.

During a checkpoint, pages in the shared-memory buffer pool are written to
disk as chunk writes. These sorted, chunk writes are the most efficient way to
flush the buffer pool. (Refer to page 2-77.)

Peak performance results from flushing the buffer pool using chunk writes
that occur during a checkpoint instead of increasing the number of idle
writes initiated by the page cleaners. However, your users might experience
the more frequent checkpoints that result from this strategy as more frequent
periods of sluggishness. If idle writes clean the LRU queues more frequently,
overall performance might be lower, but users might be more content
because checkpoints can occur less often and might complete faster.

IBM Informix OnLine Database Server Administrator's Guide

How Is Tuning Done?

How Is Tuning Done?

If the cached-read percentage is lower than 95 percent, you might be able to
improve performance by lowering the values of LRU_MAX_DIRTY and
LRU_MIN_DIRTY to increase the number of free and/or unmodified pages
that are available in the shared-memory LRU queues.

If the cached-write percentage is lower than 82 percent, you might be able to
improve performance by increasing the LRU_MAX_DIRTY and
LRU_MIN_DIRTY values. This increases the number of modified buffers that
are able to accumulate in the MLRU queue and increases the likelihood that
pages will be reused before they are written to disk.

To change the value of either of these parameters, edit the configuration file
using an operating system editor.

The optimal value of CLEANERS depends on your specific hardware config-
uration. The maximum value of CLEANERS is 32. The minimum value is 0.
When CLEANERS is set to 0, the tbinit daemon assumes all responsibility for
page cleaning.

You might want to configure a page cleaner for each separate physical device.
However, if more than one disk shares a controller channel, you might find
that more than three page cleaners per controller overburdens the controller.
In most cases, the additional cleaners do not improve performance unless
you separate successive chunks from a blobspace or dbspace on the disk.
Ideally, you should try to assign successive chunks to separate disk devices.
(Refer to page 1-43 for more details about disk layout. Refer to page 3-115 for
more details about how to change the number of page cleaners.)

The default value of LRUS is the larger of USERS/2 or 8, where USERS is the

specified configuration file parameter. The minimum value of LRUS is 3 and
the maximum value is 8. The optimal value of LRUS depends on your specific
hardware configuration. Your best guide for selecting a value for LRUS is to
experiment with different values and monitor the performance benefits. You
might find that a larger value increases performance on machines with more
than two CPUs. To change the value of LRUS, edit the configuration file using
an operating system editor.

How to Improve Performance 5-19

Checkpoint Frequency

5-20

Checkpoint Frequency

Familiarize yourself with the definition of a checkpoint, and with the events
that happen during a checkpoint, before you begin this section. Refer to
pages page 2-70 and page 2-72 for background information.

Performance Tradeoffs

The frequency of checkpoints and their duration affects OnLine performance.
Since OnLine restricts all database server processes from entering a critical
section during a checkpoint, frequent checkpoints might appear to lower
performance because user processing might be interrupted.

Your ability to tune the page-cleaning parameters means that you need not
rely solely on checkpoints to keep the shared-memory buffer pool clean. If
you wish, you can specify the page-cleaning parameters so that idle writes
maintain an adequate supply of free and/or unmodified page buffers, and
checkpoints are needed less frequently. (However, this might result in less-
than-peak performance. Refer to page 5-18 for an explanation of why relying
on checkpoints to flush the shared-memory buffer pool might result in the
greatest overall performance.)

The decision to configure OnLine for less-frequent checkpoints implies two
tradeoffs:

= You are liable to experience a longer fast-recovery time after an
operating system failure. The longer fast-recovery time is a conse-
guence of the larger physical log and the increased number of logical
log entries that are written between checkpoints.

= The larger physical log requires more space on disk.

IBM Informix OnLine Database Server Administrator's Guide

How Is Tuning Done?

How Is Tuning Done?

The first step in tuning is to determine the cause of frequent checkpoints. Are
the checkpoints occurring because the physical log is becoming full too
rapidly or as a result of some other event?

To answer this question, examine the value of the Nunpage field in the
physical log portion of the DB-Monitor Status menu, Logs option, or in the
tbstat -1 (lowercase -L) output. The physical log Nunpage value is the number
of physical log pages used since the last checkpoint. If the value of Nunpage
is close to 75 percent of the physical log size at the time that the checkpoint
begins, the checkpoint was probably initiated as a result of physical log
activity.

If this is the case, you can reduce the frequency of the checkpoint by
increasing the size of the physical log or increasing the specified value of
CKPTINTVL, the default checkpoint interval. If you wish to increase the
frequency of checkpoints, you can either reduce the size of the physical log
or reduce the specified value of CKPTINTVL, the default checkpoint interval.
(Refer to page 3-107 for more details about how to increase the size of the
physical log. Refer to page 3-109 for more details about how to change the
value of CKPTINTVL.)

How to Improve Performance 5-21

Psort Parallel-Process Sorting Package

5-22

Psort Parallel-Process Sorting Package

Psort is a sorting package that improves performance by taking advantage of
multiprocessors to start and synchronize multiple sort processes. This
parallel-process sorting package is transparent to end users. (If you are
working on a uniprocessor machine and you set any of the parallel-sort
parameters, OnLine ignores the parameters and proceeds with nonparallel
sorting.)

Psort becomes an option for OnLine under either of three conditions;

= The database server process is ordering query results. (An ORDER BY
clause appears as part of a SELECT statement.)

= The database server process is eliminating duplicates. (The UNIQUE
or DISTINCT keyword appears in the SELECT statement.)

= The database server process is executing a sort-merge join, a new
multitable join method that is used with the older “nested-loop” join
method.

How Psort Works

To enable Psort, set the PSORT_NPROCS environment variable, which defines
the upper limit for the number of processes used to sort a query. To disable
Psort, unset the PSORT_NPROCS environment variable. (Refer to the next
topic for guidelines for setting the value of PSORT_NPROCS.)

If Psort is enabled, OnLine performs parallel sorting only when performance
is likely to improve. OnLine does not employ parallel sorting for a small
number of input rows or if a table index supports the order requested in the

query.

If OnLine engages Psort, multiple sorted runs are made in memory, written
to disk, and then merged from disk into a single result stream. OnLine calcu-
lates the number of processes to use in the sort based on the size of the query
and the number of processors on the system. You can tune Psort by limiting
the maximum number of processes available to OnLine and by directing
OnLine to use directories on different disks for the intermediate writes.

IBM Informix OnLine Database Server Administrator's Guide

Tuning Psort

Tuning Psort

If PSORT_NPROCS is set to 0, Psort uses three as the default number of
processes for the sort.

When PSORT_NPROCS is set to some number greater than zero, the value is
the maximum number of processes available. OnLine calculates the number
of sort processes to use given that constraint.

You maximize the effectiveness of Psort if you set PSORT_NPROCS to the
number of available processors on the system. The maximum value for
PSORT_NPROCS is 10.

Each sort process must sort a minimum of 50 pages of data. That is, if you
specify five sort processes but only 125 pages of data require sorting, the
number of processes working on the sort is limited to two.

Set the PSORT_NPROCS environment variable as follows:
C shell: set env PSORT_NPROCS num of _processes
Bourne shell: PSORT_NPROCS=num of _pr ocesses

export PSORT_NPRCCS

A second environment variable, PSORT_DBTEMP, lists the directories that
OnLine uses for its intermediate writes. OnLine writes into the directories
listed in PSORT_DBTEMP in round-robin fashion. For maximum performance,
specify directories that reside in file systems on different disks. Ideally, the
disks should not contain any other frequently accessed files.

If PSORT_DBTEMP is not set, OnLine uses the single directory named by the
environment variable DBTEMP. If DBTEMP is not set, OnLine uses the
directory /tmp.

When you specify more than one directory, separate the directory names
with a colon. Set the PSORT_DBTEMP environment variable as follows:

C shell: setenv PSORT_DBTEMP directory:directory

Bourne shell: PSORT_DBTEMP=di rectory:directory
export PSORT_DBTEMP

How to Improve Performance 5-23

Psort and Shared Memory

5-24

Psort and Shared Memory

Each parallel sort uses one UNIX shared-memory segment.

A front-end process is able to open an unlimited number of SELECT cursors
that contain an ORDER BY clause. However, the number of sorts that can be
executed in parallel is limited by the number of shared-memory segments
that each OnLine database server process can attach to. (For more details
about the UNIX parameter that specifies the maximum number of attached
shared-memory segments per process, refer to page 2-18.) All cursors beyond
the UNIX limit are executed using nonparallel sorts.

SPINCNT Configuration Parameter

Familiarize yourself with the function of a shared-memory latch before you
begin this section. Refer to page 2-41 for background information.

When an OnLine user process attempts to acquire a latch, it tests for avail-
ability. If the latch is not available, the user process can either wait or not wait.
A third option is available on some multiprocessor UNIX operating systems:
spin and test again.

In a multiprocessor environment, it is possible for two OnLine user processes
to be resident in a CPU and for both user processes to need access to the same
resource. Normally, one user process acquires the resource while the other
process waits. The waiting user process “sleeps,” meaning that the user
process is switched out of the CPU.

If a machine supports spin and test, the waiting user process does not sleep.
Instead, it “spins.” The “spinning” that the user process performs while it
waits is an assembly-level activity that varies among machines. The activity
itself does nothing.

The advantage of spinning and testing is that the waiting user process
remains in the CPU. This eliminates the overhead of context switching; that
is, the overhead that is incurred when the user process is switched in and out
of the CPU. The spin-and-test approach is more efficient than sleeping.

IBM Informix OnLine Database Server Administrator's Guide

SPINCNT Configuration Parameter

The number of times that a user process spins and tests is specified by the
configuration parameter SPINCNT. The default value is 300. If you increase
the value of SPINCNT, you increase the period that the user process remains
in the CPU. If you decrease the value, you reduce the period.

You cannot directly affect the amount of time that the process spins between
tries.

How to Improve Performance 5-25

DB-Monitor Screens

InThisChapter 6-3
MainMenu L L Lo L 6-4
StatusMenu. L L L L 0oL 6-5
ParametersMenu 6-6
Dbspaces Menu. 6-7
ModeMenuo L 6-8
Force-Ckpt Option. 6-9
ArchiveMenu L0000 6-10

Logical-LogsMenu L. 6-11

6-2 IBM Informix OnLine Database Server Administrator's Guide

In This Chapter

This chapter serves as a reference for the DB-Monitor screens. You can use it
to quickly determine the purpose and use of a specific screen or option.

To start the monitor, execute tbmonitor from the command line. If you are
logged in as user informix, the main menu appears. All users other than
informix have access only to the Status menu.

All menus and screens function in the same way. For menus, use arrow keys
or the SPACEBAR to scroll to the option you want to execute and press
RETURN, or you can press the first letter of the option. When you move from
one option to the next by pressing the SPACEBAR or an arrow key, the option
explanation (line 2 of the menu) changes.

If you want general instructions for a specific screen, press CTRL-W. If you
need help to determine what you should enter in a field on the screen, move
the highlight to the field (by using the Tab key) and press CTRL-F or F2.

Some of the menus, including the main menu, are ring menus. Ring menus are
indicated with three dots (...) on the far right or left side. The dots indicate
that you can continue to move in the direction of the dots with the arrow keys
or the SPACEBAR to view other options.

The cross-references that appear next to each of the menu descriptions direct
you to pages in this manual that provide instructions and advice to help you
perform the task correctly.

DB-Monitor Screens 6-3

Main Menu

Main Menu
Menu Force-
Item Status Parameters| Dbspaces Mode Ckpt | Archive Logical-Logs | Exit
Options | Profile Initialize | Create Startup Create Auto-
Backup
Users Shared- BLOBSpace | On-Line Restore Continuous-
Memory Backup
Spaces Add-Log | Mirror Graceful- Tape- Databases
Shutdown Parameters
Databases | Drop-Log | Drop Immediate- Exit Tape-
Shutdown Parameters
Logs Physical- | Info Take- Exit
Log Offline
Archive Exit Add_chunk | Exit
Output Status
Configu- Exit
ration
Exit

6-4

IBM Informix OnLine Database Server Administrator's Guide

Status Menu

Status Menu

Option Description See page...

Profile Use the Profile option to display OnLine perfor- 3-83
mance statistics.

Users Use the Users option to display the status of active 3-86
OnLine database server processes.

Spaces Use the Spaces option to display status information 3-70
about OnLine dbspaces, blobspaces, or each chunk 3.75
that is part of a dbspace or blobspace.

Databases Use the Databases option to display the name, 3-74
owner, and logging status of the first 100 databases.

Logs Use the Logs option to display status information 3-80
about the physical log buffer, the physical log, the
logical log buffer, and the logical log files.

Archive Use the Archive option to display a list of all archive 3-61
tapes and logical log files that would be needed if a
data restore were required now.

Output Use the Output option to store the output of any
other status information in a specified file.

Configuration Use the Configuration option to create a copy of the 3-73

Exit

current (effective) OnLine configuration to a
specified file.

DB-Monitor Screens 6-5

Parameters Menu

6-6

Parameters Menu

Option Description See page...

Initialize Use the Initialize option to initialize OnLine disk 1-52
space or to modify OnLine disk space parameters.

Shared- Use the Shared-Memory option to initialize OnLine 1-54

Memory shared memory or to modify OnLine shared-
memory parameters.

Add-Log Use the Add-Log option to add a logical log filetoan 3-28
OnLine dbspace.

Drop-Log Use the Drop-Log option to drop a logical log file 3-30
from an OnLine dbspace.

Physical-Log Use the Physical-Log option to change the size or the 3-107
location of the OnLine physical log.

Exit

IBM Informix OnLine Database Server Administrator's Guide

Dbspaces Menu

Dbspaces Menu

Option Description See page...
Create Use the Create option to create a dbspace. 3-97
BLOBSpace Use the BLOBSpace option to create a blobspace. 3-88
Mirror Use the Mirror option to add mirroring to an existing 3-105
blobspace or dbspace or to end mirroring for a
blobspace or dbspace.
Drop Use the Drop option to drop a blobspace or adbspace 3-91
from the OnLine configuration.
3-99
Info Use the Info option to see the identification number, 3-70
location, and fullness of each chunk assigned to a
blobspace or dbspace.
Add_chunk Use the Add_chunk option to add a chunk to a 394
blobspace or dbspace.
Status Use the Status option to change the status ofachunk 3-101
in a mirrored pair.
Exit

DB-Monitor Screens 6-7

Mode Menu

Mode Menu

Option Description See page...
Startup Use the Startup option to initialize shared memory 3-8
and take OnLineto quiescent mode.
On-Line Use the On-Line option to take OnLine from 39
quiescent to online mode.
Graceful- Use the Graceful-Shutdown option to take OnLine 3-10
Shutdown from on-line to quiescent mode. Users can complete
their work.
Immediate- Use the Immediate-Shutdown option to take OnLine 3-11
Shutdown from online to quiescent mode in 10 seconds.
Take-Offline Use the Take-Offline option to detach shared 3-12
memory and immediately take OnLineto offline
mode.
Exit

6-8 IBM Informix OnLine Database Server Administrator's Guide

Force-Ckpt Option

Force-Ckpt Option

Description See page...

Use the Force-Ckpt option to see the time of the most recent check- 7-67
point or to force OnLine to execute a checkpoint.

DB-Monitor Screens 6-9

Archive Menu

6-10

Archive Menu

Option Description See page...

Create Use the Create option to create a level-0, level-1, or 3-57
level-2 archive.

Restore Use the Restore option to perform an OnLinedata 4-45
restore.

Tape- Use the Tape-Parameters option to modify the 3-52

Parameters parameters of the archive tape device. through

3-56
Exit

IBM Informix OnLine Database Server Administrator's Guide

Logical-Logs Menu

Logical-Logs Menu

Option Description See page...

Auto-Backup Use the Auto-Backup option to direct OnLineto back 3-36
up all full logical log files and/or the current log file.

Continuous- Use the Continuous-Backup option to back up each 3-37

Backup logical log file as it becomes full.
Databases Use the Databases option to modify the logging 3-33
status of an OnLine database.
Tape- Use the Tape-Parameters option to modify the 3-18
Parameters parameters of the logical log backup tape device. through
3-22
Exit

DB-Monitor Screens 6-11

Utilities

In This Chapter .

dbexport: Unload a Database and Schema File
Syntax . .
Destination Optlons .
Contents of the Schema File

dbimport: Create a Database
Syntax .
Input File Locatlon Optlons
Create Options .

dbload: Load Data from a Command File .
Syntax . .
Command-File Syntax Check
Starting Line Number
Batch Size.
Bad-Row Limits .
How to Create a Command F|Ie .

Delimiter Form FILE Statement .
Delimiter Form INSERT Statement.
Delimiter Form Statement Examples .
Character-Position FILE Statement.
Character-Position INSERT Statement

Character-Position Statement Examples .

dbschema: Output SQL Statements .
Syntax . o
Include Synonyms
Include Privileges . .
Specify a Table, View, or Procedure

7-5
7-6

7-9

7-10
7-11
7-12
7-14

7-15
7-16
7-18
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-26
7-28
7-29

7-32
7-32
7-33
7-34
7-35

7-2

tbcheck: Check, Repair, or Dlsplay.
Syntax . .

Option Descrlptlons .

No Options .

-cc Option . . .
-cd and -cD Optlons
-ce Option

-ci and -cl Options
-cr Option

-n Option

-pB Option .

-pc Option

-pd and -pD Optlons
-pe Option .

-pk and -pK, -pl and pL Optlons

-pp and -pP options .
-pr Option .
-pt and -pT Options .
-q Option. .
-y Option.

tbinit: Initialize OnLine
Syntax .

No Optlons
-i Option .
-p Option
-s Option.

tbload: Create a Database or Table.
Syntax .

Specify Tape Parameters
Create Options .

tblog: Display Logical Log Contents .
Syntax . .

Log-Record Read Fllters

-b Option.
-d Option
-n Option

Log-Record Display Fllters

IBM Informix OnLine Database Server Administrator's Guide

7-36
7-38
7-39
7-39
7-39
7-40
7-40
7-40
7-41
7-41
7-42
7-42
7-42
7-43
7-43
7-43
7-44
7-44
7-45
7-45

7-45
7-46
7-46
7-46
7-47
7-47

7-47
7-48
7-49
7-50

7-51
7-51
7-52
7-52
7-53
7-53
7-54

Interpreting tblog Qutput 755

Record Types. 17156
Record Contents. 157

tbmode: Mode and Shared- MemoryChanges e e e e e ... L1064
Syntax Coe T1-65

ChangeOaneMode. Y £ 16)

-kOption .766
-mOption.766
-sOption .T7167
-uOption T1-67
Force a Checkpoint . . . Y £514

Change Shared-Memory Re5|dency 768
Switch the Logical LogFile 768
Killan OnLine ServerProcess 7-69
Kill an OnLine Transaction 7-69

tbparams: Modify Log Configuration Parameters. 7-70
Syntax . . . e A (0]

Add a Logical Log F|Ie e A (0]
Drop a Logical Log File.7171
Change Physical Log Parameters 772

tbspaces: ModifyBIobspacesor Dbspaces. 17173
Syntax . . . Y (Y

Create a Blobspace or Dbspace e A4
Drop a Blobspace or Dbspace 17175
AddaChunk .776
Change Chunk Status 7177

tbstat: Monitor OnLine Operation 7-78
Syntax .78

Option Descriptions. 782

No Options78
-OptionT182
-aOption7182
-b Option .T782
-BOption .78
-cOption78
-dOption .78
-DOption.786

Utilities 7-3

-F Option.
-k Option.
-1 Option .
-m Option
-0 Option.
-p Option
-P Option
-r Option.
-R option.
-s Option.
-t Option .
-u Option
-X Option
-z Option.

tbtape: Logging, Archives, and Restore .
Syntax

Request a Logical Log Backup.
Start Continuous Backups .
Create an Archive .

Perform a Data Restore . .
Change Database Logging Status.

tbunload: Transfer Binary Data in Page Units .

Syntax
Specify Tape Parameters.

7-4 IBM Informix OnLine Database Server Administrator's Guide

7-87
7-88
7-89
7-91
7-91
7-92
7-95
7-95
7-95
7-97
7-98
7-99
7-101
7-102

7-102
7-103
7-104
7-104
7-105
7-105
7-106

7-107
7-108
7-109

In This Chapter

This chapter describes the OnLine utilities that allow you to execute admin-
istrative tasks directly from the shell prompt.

dbexport: Unload a Database and Schema File

The dbexport utility unloads a database into ASCI|I files. The dbexport utility
creates an ASCII schema file that dbimport uses to re-create the database
schema in another Informix environment. You can edit the schema file to
modify the database that dbimport creates.

The dbexport utility supports the following three destination options:

= Unloading a database and its schema file to disk

» Unloading a database and its schema file to tape

= Unloading the schema file to disk, where it can be examined and
modified, and unloading the database data files to tape

You must either have DBA privilege or be logged in as user informix or root
to export a database.

The dbexport process locks the database in Exclusive mode during the
export.

If you export a database to disk, be sure that you have enough disk space
available to hold an ASCIl dump of all data in the database. Otherwise, use
the tape option.

Utilities 7-5

Syntax

The SQL statements contained in the dbexport schema file do not contain all
available information. The following information is omitted:

= Initial and next extent values

= Lock mode

= Dbspace where the table should reside

= Blobspace where a blob column should reside

= Logging mode of the database, if there is one
For this reason, you might want to unload the file to disk where you can edit

it before you import the database. Refer to page 7-9 for more details about the
contents of the schema file.

You can use the dbexport/dbimport pair to convert databases from an
OnLine database server to an IBM Informix SE database server, or vice versa.
Syntax for the SE database server dbimport utility differs from OnLine
syntax. Refer to the IBM Informix SE Administrator’s Guide for more details
about dbimport syntax.

Syntax
dbexport database -|
\ -c /\ -d / \ -q /\ Destination /
Options
p. 7-7
-C instructs dbexport to complete exporting unless fatal errors
occur.
-q suppresses display (to the standard output) of error messages,

warnings, and generated SQL data definition statements.

database specifies the name of the database you want to export.

The dbexport utility creates a file of messages called dbexport.out. This file
contains error messages and warnings, and it also contains a display of the
SQL data definition statements it is generating. The same material is also
written to the standard output unless you specify the -q option.

7-6 IBM Informix OnLine Database Server Administrator's Guide

Destination Options

You can use the OnLine syntax database@dbservername to specify the database.
Specifying a database server name allows you to choose a database on
another server as your current database if you have installed IBM Informix
STAR.

During the export, the database is locked in exclusive mode. If dbexport
cannot obtain an exclusive lock, the program ends with a diagnostic message.

If you specify -c, dbexport does not interrupt processing unless one of the
following fatal errors occurs:

= Failure to open the tape device specified

= Bad writes to the tape or disk

= Invalid command parameters

= Inability to open the database specified

= Incorrect UNIX file or directory permissions

You can cancel dbexport at any time by pressing the Interrupt key. The
dbexport program asks for confirmation before terminating.

Destination Options

Destination
Options

—> -

-0 directory

-t device -b blocksize

-s tapesize \
-f pathname

-b blocksize specifies in kilobytes the block size of the tape device.

-f pathname specifies the pathname on disk where you want to store the
schema file, if you are storing the data files on tape.

Utilities 7-7

Destination Options

7-8

-o directory names the directory on disk where you want the ASCII data
files and the schema file stored.

-s tapesize specifies in kilobytes the amount of data that can be stored on
the tape.

-t device names the pathname of the tape device where you want the
ASCII data files and, possibly, the schema file stored.

If you do not specify a destination for the data and schema files, the directory
database.exp is placed in the current working directory. The schema file is
written to the file database.sql.

If you use the -f option, the schema file is written to the disk pathname
specified. Once on disk, you can examine and modify the schema file before
you use it with dbimport.

If you use the -0 option, the directory specified as directory cannot exist. It is
created by dbexport and its directory group is informix. The schema file is
written to the file database.sgl in the specified directory.

If you use the -s option, the tape size is limited to 2,097,151 KB. The limit is
required because of the way in which dbexport and dbimport track their
position into the tape.

The following command exports the stores5 database to tape with a block
size of 16 KB and a tape capacity of 24,000 KB. The schema file is written to
/tmp/stores5.imp.

dbexport -t /dev/rnt0 -b 16 -s 24000 -f /tnp/stores5.inp stores5

The following command exports the stores5 database to the directory named
/usr/informix/export/stores5.exp:

dbexport -o /usr/inform x/export storesb

IBM Informix OnLine Database Server Administrator's Guide

Contents of the Schema File

Contents of the Schema File

The .sql file contains the SQL statements needed to re-create the exported
database, as well as some additional ownership and privilege information.
The schema file does not retain all the information that might have been
included in the original statements used to create the database and tables.
The following information is omitted:

= Initial and next extent values

= Lock mode

= Dbspace where the table should reside

= Blobspace where a blob column should reside

= Logging mode of the database, if there is one
Initial or next extent sizes are not retained in the .sql file statements. If you do
not edit the .sqgl file CREATE TABLE statements before you run dbimport, the
tables will be created with the default extent sizes of eight pages. If you want

to change the extent sizes after the database is imported, use the ALTER
TABLE statement.

The lock mode of the table is not retained in the .sql file statements. If you do
not edit the .sql file CREATE TABLE statements before you run dbimport, the
table will be created with the default lock mode, which is page-level locking.
If you want to change the lock mode after the database is imported, use the
ALTER TABLE statement.

The logging mode is not retained in the .sql file. You can specify any one of
three options when you import the database using dbimport:

= ANSI-compliant database with unbuffered logging

= Unbuffered logging

= Buffered logging
If you want to change the logging mode of the database and do not specify a
logging option in the dbimport command line, you can make the change

from DB-Monitor after the database is imported. Refer to page 7-14 for more
details about starting logging from the dbimport command line.

Utilities 7-9

dbimport: Create a Database

7-10

The statements in the ASCII schema file that create tables, views, and indexes
and grant privileges do so using the name of the person who originally
created the database. In this way, the original owner retains DBA privileges
for the database and is the owner of all the tables, indexes, and views. In
addition, whoever executes the dbimport command also has DBA privileges
for the database.

dbimport: Create a Database

The dbimport utility creates a database and loads it with data from input
ASCII files generated by dbexport. The ASCII files consist of a schema file that
is used to re-create the database and data files that contain the database data.

The dbimport utility can read the ASCII files from the following three
location options:
= Allinput files are located on disk.
= Allinput files are located on tape.
= The schema file is located on disk, and the data files are located on
tape.

Refer to page 7-9 for more details about the contents and use of the schema
file generated by dbexport.

The dbimport utility supports the following create options for the new
database:
= Create an ANSI-compliant database (includes unbuffered logging).

= Start transaction logging for a database (unbuffered or buffered
logging).
= Specify the dbspace where the database will reside.

The user who runs dbimport is granted DBA privilege on the newly created
database.

The dbimport process locks each table as it is being loaded and unlocks the
table when the loading is completed.

IBM Informix OnLine Database Server Administrator's Guide

Syntax

If you are loading a database from IBM Informix SE into an OnLine
environment, check that you set the SQLEXEC environment variable to
SINFORMIXDIR/lib/sqlturbo (to specify the OnLine database server).

You can display the software version number by executing dbimport -V.

Syntax
Input File Create

. dbimport Location | | Options | _ database _|

\ / \ / p. 7-12 p. 7-14
-C -q

-C instructs dbimport to complete importing unless fatal errors
occur.

-q suppresses display (to the standard output) of error messages
and warnings.

database specifies the name of the database you intend to create.

A file of messages called dbimport.out is created in the current directory. The
dbimport.out file contains any error messages and warnings related to
dbimport processing. The same material is also written to the standard
output unless you specify the -q option.

You can use the OnLine syntax database@dbservername to specify the database.
Specifying a database server name allows you to choose a database on
another server as your current database if you have installed I1BM Informix
STAR.

If you specify -c, dbimport does not interrupt processing unless one of the
following fatal errors occurs:

= Failure to open the tape device specified

= Bad writes to the tape or disk

= Invalid command parameters

= Inability to open the database specified

= Incorrect UNIX file or directory permissions

Utilities 7-11

Input File Location Options

7-12

You can cancel dbimport at any time by pressing the Interrupt key. The
dbimport program asks for confirmation before terminating.

Input File Location Options

Input
File
Location

| _J B
-i directory

-t device -b blocksize -s tapesize
\ -f pathname

-b blocksize specifies in kilobytes the block size of the tape device.

-f pathname specifies the pathname on disk where dbimport will find the
schema file to use as input to create the database (data files are
read from tape).

-i directory names the directory on disk where dbimport will find the
input data files and schema files.

-s tapesize specifies in kilobytes the amount of data that can be stored on
the tape.

-t device names the pathname of the tape device where the tape
containing the input files is mounted.

If you do not specify an input file location, dbimport looks for the directory
database.exp under the current directory.

If you use the -i option, dbimport looks for the directory under the current
directory unless a complete pathname is provided. You can give the database
a new name if you use the -i option.

IBM Informix OnLine Database Server Administrator's Guide

Input File Location Options

You cannot use the -f option unless it was used when the schema file was
exported with the dbexport program. If you use -f, you typically use the
same command filename that you specified in the dbexport command. If you
specify only a filename, dbimport looks for the file in the .exp subdirectory
of either your current directory or the directory you specify with the -i
option.

If you are importing from tape, you must use the same block size and tape
size that you used to export the database.

The following command imports the stores5 database from a tape with a
block size of 16 KB and a capacity of 24,000 KB. The schema file is read from
/tmp/stores5.imp. The -c option directs dbimport to continue unless a fatal
error is detected.

dbinport -c -t /dev/rnt0O -b 16 -s 24000 -f /tnp/stores5.inp stores5

The following command imports the stores5 database from the stores5.exp
directory under the Zusr/informix/port directory. The schema file is
assumed to be /usr/informix/port/stores5.exp/stores5.sql.

dbi nport -c -i /usr/inform x/port stores5

Utilities 7-13

Create Options

Create Options

Create
Options

—> |
L -d dbspace
L buffered -/

-ansi

-ansi creates an ANSI-compliant database.
-d dbspace names the OnLine dbspace where the database will be created.

-1 establishes unbuffered transaction logging for the imported
database.

-1 buffered establishes buffered transaction logging for the imported
database.

A database that is ANSI-compliant uses unbuffered logging. In addition, the
ANSI rules for transaction logging are enabled. For more information about
ANSI-compliant databases, see the CREATE DATABASE statement in

IBM Informix Guide to SQL: Reference.

If you do not specify a dbspace name, the database is created in the root
dbspace by default.

The -1 option is equivalent to the WITH LOG clause of the CREATE DATABASE
statement.

The following command imports the stores5 database from the
/usr/informix/port/stores5.exp directory into the current directory. The new
database is ANSI-compliant, and the transaction log file is specified as
storesb.log in /usr/work.

dbi mport -c stores5 -i /usr/inform x/port -ansi /usr/work/stores5.|og

7-14 1BM Informix OnLine Database Server Administrator's Guide

dbload: Load Data from a Command File

The next command imports the stores5 database from tape into the auckland
dbspace. The database is created with unbuffered logging. The command
suppresses the echo of the SQL statements and continues processing unless
fatal errors occur.

dbi mport -cq -d auckland -1 -t /dev/rnt0 -b 16 -s 24000 stores5

dbload: Load Data from a Command File

The dbload utility transfers data from one or more ASCII files into one or
more existing tables. The dbload utility offers four advantages over the
LOAD statement:

= You can create the data that dbload will load, unrestricted by the
format or the arrangement of data in an existing input file. The
dbload command file can accommodate data from entirely different
database management systems.

= You can specify a starting point in the load by directing dbload to
read but ignore x number of rows.

= You can specify a batch size so that after every x number of rows are
inserted, the insert is committed.

= You can limit the number of bad rows read, beyond which dbload
ends.

The cost of dbload flexibility is time and effort spent creating the dbload
command file, which is required for dbload operation. The ASCII input files
are not specified as part of the dbload command line. Neither are the tables
into which the data is inserted. This information is contained within the
command file.

The presence of indexes greatly affects the speed with which the dbload
utility loads data. For best performance, drop any indexes on the tables
receiving the data before you run dbload. You can create new indexes after
dbload has finished.

Utilities 7-15

Syntax

I
\-r/ \L Starting f \L Batch Size f \L Bad-Row f
Line No. p. 7-19 Limits

The dbload syntax and use information begins in the next section. The
dbload command file structure and instructions for creating a command file
begin on page 7-21. After you create the command file, you can use the -s
option (see page 7-18) to check the syntax of the statements within the
command file.

You can display the software version number by executing dbload -V.

Syntax
)) Command-File
dbload — -d database -c command file - error log file 7 Syntax Check
p. 7-18

p. 7-18 p. 7-20

-ccommand file specifies the filename or pathname of a dbload command
file.

-d database specifies the name of the database to receive the data.
-l error log file specifies the filename or pathname of an error log file.

-r instructs dbload to allow other users to modify data in the
table during the load (do not lock the table during the
load).

You can use the OnLine syntax database@dbservername to specify the database.
Specifying a database server name allows you to choose a database on
another server as your current database if you have installed IBM Informix
STAR.

If you specify part (but not all) of the required information, dbload prompts
you for additional specifications. After you enter additional specifications or
press RETURN to accept the default values that appear in the prompts, the
screen is cleared and dbload begins execution.

7-16 1BM Informix OnLine Database Server Administrator's Guide

Syntax

The error log file specified by the -1 flag stores any input file rows that dbload
cannot insert into the database, as well as diagnostic information.

Tables specified in the command file are locked during loading, preventing

other users from modifying data in the table, unless you specify the -r flag.

Table locking reduces the number of locks needed during the load but at the
price of reduced concurrency. If you are planning to load a large number of
rows, use table locking and load during nonpeak hours.

If your database supports transactions, dbload commits a transaction after
every 100 rows are inserted. To modify this default value, specify a batch size
(see page 7-19).

The dbload default value for bad-row limit is 10. This means that after
dbload reads the eleventh bad row, it terminates. If dbload is loading data
rows into a database with transactions when the bad-row limit is reached, the
default condition is for dbload to commit all rows that have been inserted
since the last transaction. To modify the bad-row limit or to change the
default condition from *“always commit” to “prompt for instructions,” refer
to page 7-20.

If your most recent dbload session ended prematurely, you can resume
loading with the next record in the file by specifying the starting line number
in the command-line syntax (see page 7-18).

If you press the Interrupt key, dbload terminates and discards any new rows
that have been inserted but not yet committed to the database (if the database
has transactions).

Utilities 7-17

Command-File Syntax Check

Command-File Syntax Check

Command-File
Syntax Check
7-18

L ye -
Y s
> output file

-S instructs dbload to check the syntax of the statements in the
command file without inserting data.

> output file specifies the name of the file where the output from the syntax
check is stored.

The -s option performs a syntax check on the FILE and INSERT statements in
the specified dbload command file. The screen displays the command file
with any errors marked where they are found.

You can redirect the -s output to a file with the redirect symbol (>).

Starting Line Number

Starting
Line
Number
—> -
\ -i number rows ignore /
-i number rows ignore instructs dbload to ignore the specified number

of NEWLINE characters.

7-18 IBM Informix OnLine Database Server Administrator's Guide

Batch Size

The -i option instructs dbload to read and ignore the specified number of
NEWLINE characters in the input file before it begins processing. (This option
assumes that a NEWLINE character indicates the end of an individual data
row and header information.)

This option is useful if your most recent dbload session ended prematurely.
If, for example, dbload ended after inserting 240 lines of input, you can
resume loading at line 241 by setting number rows ignore equal to 240. It is also
useful if header information in the input file precedes the data records.

Batch Size

Batch
Size

-n number inserted rows

-n number inserted rows instructs dbload to execute a commit after the
specified number of new rows are inserted.

If your database supports transactions, dbload commits a transaction after
every specified number of new rows are read and inserted. A message is
displayed after each commit.

If you do not specify the -n option, dbload commits a transaction after every
100 rows are inserted.

For information about transactions, see IBM Informix Guide to SQL: Tutorial.

Utilities 7-19

Bad-Row Limits

Bad-Row Limits

Bad-Row
Limits

-e number errors read -p

-e number errors read specifies the number of bad rows that dbload reads
before terminating.

-p prompts for instructions if the number of bad rows
exceeds the limit.

If you set -e number errors read to an integer, dbload terminates when it reads
(number errors read +1) bad rows. If you set the value of number errors read to
0, dbload terminates when it reads the first bad row. There is no default value
for number errors read.

If dbload exceeds the bad-row limit and the -p option is specified, dbload
prompts you for instructions before it terminates. The prompt asks you to
indicate whether you want to roll back or to commit all rows inserted since
the last transaction.

If dbload exceeds the bad-row limit and the -p option is not specified, dbload
commits all rows inserted since the last transaction.

If you do not specify the -e option, the default is 10. This means that after
dbload reads the eleventh bad row, it terminates. In a database with transac-
tions, unless you specify otherwise, dbload commits any new rows that have
been inserted since the last transaction.

7-20 IBM Informix OnLine Database Server Administrator's Guide

How to Create a Command File

How to Create a Command File

Before you use dbload, you first create an ASCII command file that names the
input data files and the tables that receive the data. The command file maps
fields from one or more input files into columns of one or more tables within
your database.

The command file contains only FILE and INSERT statements. Each FILE
statement names an input data file. The FILE statement also defines the data
fields from the input file that will be inserted into the table. Each INSERT
statement names a table that will receive the data. The INSERT statement also
defines how dbload will place the data described in the FILE statement into
the columns of the table.

Within the command file, the FILE statement can appear in the following two
forms:

s Delimiter form
= Character-position form

Use the delimiter form of the FILE statement when every field in the input
data row uses the same delimiter and every row ends with a NEWLINE
character. This format is typical of data rows with variable-length fields. You
can also use the delimiter form of the FILE statement with fixed-length fields
as long as the data rows meet the delimiter and NEWLINE requirements. The
delimiter form of FILE and INSERT is easier to use than the character-position
form.

Use the character-position form of the FILE statement when you cannot rely
on delimiters and you need to identify the input data fields by character
position within the input row. For example, you would use this form to
indicate that the first input data field begins at character position 1 and
continues until character position 20.

Another reason to use this second form is if you must translate a character
string into the null value. For example, if your input data file uses a sequence
of blanks to indicate a null value, you must use the second form if you want
to instruct dbload to substitute null at every occurrence of the blank-
character string.

Utilities 7-21

How to Create a Command File

7-22

You can combine both forms of the FILE statement in a single command file.
For clarity, each statement type and form are described separately in the
sections that follow:

= Delimiter form FILE statement (page 7-22)

s Delimiter form INSERT statement (page 7-23)

= Character-position FILE statement (page 7-26)

= Character-position INSERT statement (page 7-28)

Delimiter Form FILE Statement

The syntax for the delimiter form of the FILE statement can be represented as
follows:

FILE filename DELIMITER “c” nfields ; —|

c defines the field delimiter for the specific input file specified as
filename.

filename specifies the input file.

nfields is an integer that indicates the number of fields in each data

row contained in filename.

If the delimiter specified by ¢ appears anywhere in the input file as a literal
character, it must be preceded with a backslash in the input file. For example,
if the value of ¢ were specified as [, you would need to place a backslash
before any literal [that appeared in the input file. Similarly, you must precede
any backslash that appears in the input file with an additional backslash.

The DELIMITER keyword causes dbload to internally assign the sequential
names f01, f02, f03, ... to fields in the input file. You cannot see these names,
but if you refer to these fields to specify a value list in an associated INSERT
statement, you must use the f01, f02, f03 format. Refer to page 7-24 to see an
example.

IBM Informix OnLine Database Server Administrator's Guide

How to Create a Command File

Two consecutive delimiters define a null field. As a precaution, you might
wish to place a delimiter immediately before the NEWLINE character that
marks the end of each data row. If you omit this delimiter, an error results
whenever the last field of a data row is empty. If you are certain that none of
the input data rows ends with an empty field, you can omit this step.

The following example command file illustrates a simple delimiter form of
the FILE and INSERT statements. The three input data files, stock.unl,
customer.unl, and manufact.unl (from stores5) were created by the UNLOAD
statement. (To see the .unl input data files, refer to the directory
SINFORMIXDIR/demo/product_name.)

FI LE stock.unl DELIMTER "|" 6;

I NSERT | NTO st ock;

FI LE customer.unl DELIMTER "|" 10;
I NSERT | NTO cust oner;

FI LE manufact.unl DELIMTER "|" 3;

I NSERT | NTO manuf act ;

Delimiter Form INSERT Statement

The INSERT statement within dbload cannot incorporate a SELECT statement.
The user who executes dbload with this command file must have Insert
privilege on the named table. The syntax for the delimiter form of the
INSERT statement can be represented as follows:

INSERT table name

INTO — : y
\L (column) ﬂ Restricted f
() Values Clause

name

column name is the column that receives the new data.

table name is the name of the table that receives the data. The table name
can include the owner name but cannot include a database
server name.

Valid syntax for the dbload VALUES clause includes constants, literal
numbers, and functions as described in IBM Informix Guide to SQL: Reference.
You can also use the sequential field names automatically assigned by
dbload (f01, f02, f03, and so on) from the FILE statement.

Utilities 7-23

How to Create a Command File

7-24

The restrictions dbload imposes on the VALUES clause value list affect only
data types DATE, DATETIME, and INTERVAL. Values of type DATE must be in
mm/dd/yyyy format. (This is the case if the DBDATE environment variable is

set to its default value, MDY4/.) Data for DATETIME and INTERVAL columns
must be in character form, showing only field digits and delimiters (no type
or qualifiers).

Inserted data types correspond to the explicit or default column list. If the
data field width is different from its corresponding character column width,
the data is made to fit. That is, inserted values are padded with blanks if the
data is not wide enough for the column, or are truncated if the data is too
wide for the column.

If the number of columns named is fewer than the number of columns in the
table, dbload inserts the default value specified for the unnamed columns. If
no default is specified, dbload attempts to insert a null value. If the attempt
violates a NOT NULL restriction or a unique constraint, the insert fails and an
error message is returned.

If the INSERT statement omits the column name(s), the default INSERT speci-
fication is every column in the named table. If the INSERT statement omits the
VALUES clause, the default INSERT specification is every field of the previous
FILE statement.

An error results if the number of column names listed (or implied by default)
does not match the number of values listed (or implied by default).

See the next section for examples of how to use the delimiter form of the
INSERT statement.

Delimiter Form Statement Examples

The first FILE and INSERT statement set in the example on page 7-22 is
repeated here:

FI LE stock.unl DELIMTER "|" 6;
I NSERT | NTO st ock;

IBM Informix OnLine Database Server Administrator's Guide

How to Create a Command File

The FILE statement describes the stock.unl data rows as composed of six
fields, each separated by a vertical bar (] = ASCII 124) as the delimiter.
Compare the FILE statement with the following data rows, which appear in
the input file stock.unl. (Since the last field is not followed by a delimiter, an
error results if any data row ends with an empty field.)

1| SMT| basebal | gl oves| 450. 00| case| 10 gl oves/ case
2| HRQ basebal | | 126. 00| case| 24/ case
3| SHK| basebal I bat | 240. 00| case| 12/ case

The example INSERT statement contains only the required elements. Since the
column list is omitted, the INSERT statement implies that values are to be
inserted into every field in the stock table. Since the VALUES clause is
omitted, the INSERT statement implies that the input values for every field
are defined in the most-recent FILE statement. This INSERT statement is valid
because the stock table contains six fields, which is the same number of
values defined by the FILE statement.

The first data row inserted into stock from this INSERT statement is as
follows:

Column Value
stock_num 1

manu_code SMT
description baseball gloves
unit_price 450.00

unit case

unit_descr 10 gloves/case

The following example FILE and INSERT statement set illustrates a more
complex INSERT statement syntax:

FI LE stock.unl DELIMTER "|" 6;

I NSERT | NTO new_stock (col1, col2, col3, col5, col6)
VALUES (f01, fO03, f02, f05, "autographed");

Utilities 7-25

How to Create a Command File

7-26

In this example, the VALUES clause uses the automatically assigned field
names assigned by dbload. You must reference the automatically assigned
field names with the letter f followed by a two-digit number: f01, f02, f10, and
so on. All other formats are incorrect.

The user has changed the column names, the order of the data, and the
meaning of col6 in the new stock table. Since the fourth column in new_stock
(col4) is not named in the column list, the new data row contains a null in the
col4 position (assuming that the column permits nulls).

The first data row inserted into new_stock from this INSERT statement is as
follows:

Column Value

coll 1

col2 baseball gloves
col3 SMT

col4 null

col5 case

col6 autographed

Character-Position FILE Statement

Five sample data rows are introduced here and used throughout the
character-position discussion to illustrate the FILE statement syntax and
function.

The examples in this section are based on an input data file, cust_loc_data,
that contains the last four fields (city, state, zipcode, and phone) of the
customer table.

IBM Informix OnLine Database Server Administrator's Guide

How to Create a Command File

Fields in the input file are padded with blanks (represented by + in the
following example) to create data rows in which the locations of data fields
and the number of characters are the same across all rows. The definitions for
these fields are CHAR(15), CHAR(2), CHAR(5), and CHAR(12), respectively.
For your reference, the character positions and five example data rows from
the cust_loc_data file are displayed:

1234567890123456789012345678901234

Sunnyval e++++++CA94086408- 789- 8075
Denver +++++++++C080219303- 936- 7731
Bl ue | sl and++++NY60406312- 944- 5691
Bri ght on+++++++MA02135617- 232- 4159
Tenpe++++++++++AZ85253XXX- XXX~ XXXX

The following example of a dbload command file illustrates the character-
position form of the FILE and INSERT statements. The example includes two
new files, cust_address and cust_sort, to receive the data. For the purpose of
this example, cust_address contains four columns, the second of which is
omitted from the column list. The cust_sort table contains two columns.

FI LE cust_| oc_data
(city 1-15,
state 16-17,
area_cd 23-25 NULL = "xxx",
phone 23-34 NULL = "XXX-XXX- XXXX",
zip 18-22,
state_area 16-17 : 23-25);
I NSERT | NTO cust _address (col 1, col 3, col 4)
VALUES (city, state, zip);
I NSERT | NTO cust _sort
VALUES (area_cd, zip);

The syntax for the character-position FILE statement can be represented as
follows:

FILE — filename — (L fieldn — start -
L (. start - ? J 1 NULL = f

end "null string"

>);.|

Utilities 7-27

How to Create a Command File

7-28

-end is a hyphen followed by an integer that indicates the character
position within a data row that ends a range of character
positions.

fieldn is a name that you assign to a data field you are defining with

the range of character positions.
filename is the name of the input file.

null string is a quoted string that specifies the data value for which
dbload should substitute a null.

start is an integer that indicates the character position within a data
row that starts a range of character positions.
The same character position can be repeated in a data field definition, or in

different fields.

The scope of reference of null string is the data field for which you define it,
but you can define the same null string for other fields.

Character-Position INSERT Statement

The INSERT statement within dbload cannot incorporate a SELECT statement.
The user who executes dbload with this command file must have Insert
privilege on the named table. A representation of the syntax for the character-
position INSERT statement follows:

, g
LGMDJ 1 st Ji

name

INSERT __table name
INTO

column name is the column that receives the new data.

table name is the name of the table that receives the data. The table name
can include the owner name but cannot include a database
server name.

Valid syntax for the dbload VALUES clause includes constants, literal
numbers, and functions as described in IBM Informix Guide to SQL: Reference.

IBM Informix OnLine Database Server Administrator's Guide

How to Create a Command File

The restrictions dbload imposes on the VALUES clause value list affect only
data types DATE, DATETIME, and INTERVAL. Values of type DATE must be in
mm/dd/yyyy format. (This is the case if the DBDATE environment variable is

set to its default value, MDY4/.) Data for DATETIME and INTERVAL columns
must be in character form, showing only field digits and delimiters (no type
or qualifiers).

Inserted data types correspond to the explicit or default column list. If the
data field width is different from its corresponding character column width,
the data is made to fit. That is, inserted values are padded with blanks if the
data is not wide enough for the column, or are truncated if the data is too
wide for the column.

If the number of columns named is fewer than the number of columns in the
table, dbload inserts the default value specified for the unnamed columns. If
no default is specified, dbload attempts to insert a null value. If the attempt
violates a NOT NULL restriction or a unique constraint, the insert fails and an
error message is returned.

If the INSERT statement omits the column name(s), the default INSERT speci-
fication is every column in the named table. If the INSERT statement omits the
VALUES clause, the default INSERT specification is every field of the previous
FILE statement.

An error results if the number of column names listed (or implied by default)
does not match the number of values listed (or implied by default).

Character-Position Statement Examples

The first FILE and INSERT statement set in the character-position example on
page 7-26 is repeated here:

FI LE cust_| oc_data
(city 1-15,
state 16-17,
area_cd 23-25 NULL = "xxx",
phone 23-34 NULL = "XxXX-XXX-XXXX",
zip 18-22,
state_area 16-17 : 23-25);
I NSERT | NTO cust _address (col 1, col 3, col 4)
VALUES (city, state, zip);

Utilities 7-29

How to Create a Command File

The FILE statement defines six data fields from the cust_loc_data table data
rows. The statement names the fields and defines the length of each field
using character positions. Compare the FILE statement in the preceding
example with the following example data rows:

1234567890123456789012345678901234

Sunnyval e++++++CA94086408- 789- 8075
Tenpe++++++++++AZ85253 XXX - XXX- XXXX

The FILE statement defines the following six data fields derived from these

data rows:
Column Values from Row 1 Values from Row 2
city Sunnyvale++++++ Tempe++++++++++
state CA AZ
area_cd 408 null
phone 408-789-8075 null
zip 94086 85253
state_area CA408 AZXXX

The null strings defined for the state and area_cd fields generate the null
values in those columns but do not affect the values stored in the state_area
column.

The INSERT statement uses the field names and values derived from the FILE
statement as the value-list input. Consider the first INSERT statement in the
character-position example:

I NSERT | NTO cust _address (col 1, col 3, col 4)
VALUES (city, state, zip);

7-30 IBM Informix OnLine Database Server Administrator's Guide

How to Create a Command File

The following data rows would be inserted into the cust_address table:

Column Values from Row 1 Values from Row 2
coll Sunnyvale++++++ Tempe++++++++++
col2 null null

col3 CA AZ

col4 94086 85253

Since the second column in cust_address (col2) is not named, the new data
row contains a null (assuming that the column permits nulls).

Consider the second INSERT statement in the character-position example:

I NSERT | NTO cust _sort
VALUES (area_cd, zip);

The following data rows would be inserted into the cust_sort table:

Column Values from Row 1 Values from Row 2
coll 408 null
col2 94086 85253

Since no column list is provided, dbload reads the names of all the columns
in cust_sort from the system catalog. Values to load into each column are
specified by field names from the previous FILE statement. You do not need
one FILE statement for each INSERT statement.

Utilities 7-31

dbschema: Output SQL Statements

7-32

dbschema -d database
\L Synonyms f\ Privileges f\ Tables,

dbschema: Output SQL Statements

Use the dbschema utility to display the SQL statements required to replicate
a database or a specific table, view, or procedure. Options enable you to
perform the following activities:

= Display CREATE SYNONYM statements, by owner, for a database or
for a specific table.

= Display all GRANT privilege statements that affect a specified user or
that affect all users for a database or for a specific table.

= Save the output to a file.

You must be the DBA or have Connect or Resource privilege to the database
before you can run dbschema on it.

You can display the software version number by executing dbschema -V.

Syntax

p. 7-33 p. 7-34 Views, or
Procedures
p. 7-35

filename

-d database specifies the database to which the schema applies.

filename specifies the filename that will contain the dbschema output.

If you do not supply a filename, dbschema sends output to the screen.

You can use the OnLine syntax database@dbservername to specify the database.
Specifying a database server name allows you to choose a database on
another server as your current database if you have installed IBM Informix
STAR.

IBM Informix OnLine Database Server Administrator's Guide

Include Synonyms

All SERIAL fields included in CREATE TABLE statements displayed by
dbschema have a starting value of 1, regardless of their original starting
value.

The dbschema utility uses the owner.object convention when it generates any
CREATE TABLE, CREATE INDEX, CREATE SYNONYM, CREATE VIEW, CREATE
PROCEDURE, or GRANT statements, and when it reproduces any unique or
referential constraints. As a result, if you use the dbschema output to create
a new object (table, index, view, procedure, constraint, or synonym), the new
object is owned by the owner of the original object. If you want to change the
owner of the new object, you must edit the dbschema output before you run
it as an SQL script.

For more information about the CREATE TABLE, CREATE INDEX, CREATE
SYNONYM, CREATE PROCEDURE, GRANT, and CREATE VIEW statements, see
IBM Informix Guide to SQL: Reference.

Include Synonyms

— N b -
-S ownername

-s ownername directs dbschema to display the CREATE SYNONYM statements
owned by ownername.

If you specify al | for ownername, dbschema displays all CREATE SYNONYM
statements for the database, table, or view specified.

Output from dbschema that is executed with the specified option -s al i ce
might appear as follows:

CREATE SYNONYM "al i ce".cust FOR "alice". custoner

For more information about the CREATE SYNONYM statement, see
IBM Informix Guide to SQL: Reference.

Utilities 7-33

Include Privileges

Include Privileges

Privileges
—P |
\ -p user /
-p user directs dbschema to output the GRANT statements that grant

privileges to user.

If you specify al | for user, dbschema outputs GRANT statements for all users
for the database, table, or view specified.

In the dbschema output, the AS keyword indicates the grantor of a GRANT
statement. The following example output indicates that norma issued the
GRANT statement:

GRANT ALL ON "ton'.custoner TO "claire" AS "nornma"

When the GRANT and AS keywords appear in the dbschema output, you
might need to grant privileges before you run the dbschema output as an
SQL script. Referring to the previous example output line, the following
conditions must be true before you can run the statement as part of a script:

= norma must have Connect privilege to the database.
= norma must have all privileges WITH GRANT OPTION for the table
tom.customer.

For more information about the GRANT statement, refer to IBM Informix Guide
to SQL: Reference.

7-34 IBM Informix OnLine Database Server Administrator's Guide

Specify a Table, View, or Procedure

Specify a Table, View, or Procedure

Tables, Views, or
Procedures

- \

-t — table name

_/ -

-f— procedure

-t— view name

-f procedure specifies the name of the procedure for which you want
dbschema to output CREATE PROCEDURE statements.

-t view name directs dbschema to limit the SQL statement output to only
those statements needed to replicate the specified view.

-t table name directs dbschema to limit the SQL statement output to only
those statements needed to replicate the specified table.
If you specify al | for the name of the procedure, dbschema displays all

CREATE PROCEDURE statements.

If you specify al | for the table name (or view name), dbschema displays the
SQL statements for all database tables and views.

For more information about the CREATE PROCEDURE statement, see
IBM Informix Guide to SQL: Reference.

Utilities 7-35

thcheck: Check, Repair, or Display

tbcheck: Check, Repair, or Display

Depending on the options you choose, tbcheck can do the following things:

= Check specified structures for inconsistencies
= Repair index structures found to contain inconsistencies
= Display information about the structures

The only structures that tbcheck can repair are indexes. If tbcheck detects
inconsistencies in other structures, messages alert you to these inconsis-
tencies but tbcheck cannot resolve the problem. For more details about
OnLine consistency checking and dealing with corruption, refer to page 4-6.

Any user can execute the check options. Only user informix or root can
display database data or initiate index repairs. OnLine must be in quiescent
mode to repair indexes.

The display options of the tbcheck utility can be compared to the tbstat
utility, which also displays information about OnLine structures. The tbstat
utility reads the shared-memory segment and reports statistics that are
accurate for the instant during which the command executes. That is, tbstat
describes information that changes dynamically during processing, such as
buffers, locks, and users. The tbcheck utility tends to display configuration
and disk-usage information that is read directly from the disk and that
changes less frequently.

The list below associates tbcheck options with their function. Syntax is
provided on page 7-38. Some display options also perform checking. Refer to
the descriptions that begin on page 7-39 for details.

Check Repair Display
Blobspace blobs -pB
Chunks and extents -ce -pe
Data rows, no blobs -cd -pd
Data rows, blob pages -cD -pD
Index (key values) -Ci -Ci -y, -pk -y -pk

(1 of2)

7-36 IBM Informix OnLine Database Server Administrator's Guide

thcheck: Check, Repair, or Display

Check Repair Display

Index (keys plus rowids) -cl -cl -y, -pK -y -pK
Index (leaf key values) -pl -y -pl
Index (leaf keys plus rowids) -pL -y -pL
Pages (by table) -pp
Pages (by chunk) -pP
Root reserved pages -cr -pr
Space usage (by table) -pt
Space usage (by table, with -pT
indexes)

System catalog tables cc -pc

(2 0f 2)

Utilities 7-37

Syntax

7-38

IBM Informix OnLine Database Server Administrator's Guide

Syntax
tbcheck
~
N. -ce -n
N_ -cr
\ -y
.pe
N. -pr
N_ -cc database __
N~ -pc ;
N -cd database
N\. -cD _/
N -ci] table name
N. <l _/
N\. -pB /|
N. -pk
N. -pK /]
N -pl
N. -pL
N. -pt
N -pT —
N -pd database Y
table name /
. rowid /
\. -pD database Y
T table name M
\ logical page num _/
N_ -pp table name rowid M
_\ tblspace num —— logical page num —
N chunk num logical page num ——/

ot

Option Descriptions

chunk num is a decimal value that specifies a chunk. Execute the -pe
option to learn which chunk numbers are associated with
specific dbspaces or blobspaces.

database is the name of the database. The database name cannot include
a database server name because thcheck does not support a
client/server environment.

logical page is a decimal value that specifies a page in the tblspace. The

num logical page number is contained in the most-significant three
bytes of the rowid. Rowid is displayed as part of tbcheck -pD
output.

rowid is a hexadecimal value that must include the 0x identifier.

Rowid is displayed as part of tbcheck -pD output.

table name is the name of the table. The table name cannot include a
database server name because tbcheck does not support a
client/server environment.

tblspace num is a hexadecimal value that identifies the tblspace. Refer to
page 2-104 for more details about obtaining the tblspace
number.

Option Descriptions

You cannot combine tbcheck option flags except as described in the
paragraphs that follow.

No Options

If you invoke tbcheck without any options, a summary of options displays.

-cc Option

The -cc option checks each of the system catalog tables for the specified
database. If the database is omitted, all system catalog tables for all databases
are checked. Before you execute tbcheck, execute the SQL statement UPDATE
STATISTICS to ensure that an accurate check occurs.

Utilities 7-39

Option Descriptions

7-40

To check the tables, tbcheck compares each system catalog table to it corre-
sponding entry in the tblspace tblspace. The data in the tables are also
checked for consistency. Refer to page 2-104 for more details about the
tbispace tblspace. (The -pc option performs the same checks and also
displays the system catalog information as it checks it, including extent use
for each table.)

tbcheck -cc
t bcheck -cc storesb

-cd and -cD Options

The -cd option reads all non-blob pages from the tblspace for the specified
table and checks each page for consistency. The bit-map page is checked to
verify mapping. If a table is not specified, all tables in the database are
checked. (The -pd option displays a hexadecimal dump of specified pages
but does not check for consistency.)

The -cD option performs the same checks as -cd but includes dbspace blob
pages if any exist. To monitor blobspace blobpages, refer to tbcheck -pB.

tbcheck -cD stores5: catal og

-ce Option

The -ce option checks each chunk free list and corresponding free space and
each tblspace extent. The tbcheck process verifies that the extents on disk
correspond to the current control information describing them. Refer to
page 2-103 for more details about the chunk free-list page. Refer to page 2-114
for a definition of an extent, and to page 2-117 for more details about extent
allocation. (The -pe option performs the same checks and also displays the
chunk and tblspace extent information as it checks it.)

t bcheck -ce

-ci and -cl Options

The -ci option checks the key values for all indexes on the specified table.
(Refer to page 2-133 for more details about index key values and the structure
of an index page.) If a table is not specified, all tables in the database are
checked.

IBM Informix OnLine Database Server Administrator's Guide

Option Descriptions

If inconsistencies are detected and OnLine is in quiescent mode, you are
prompted for confirmation to repair the problem index. If you specify the -y
(yes) option, indexes are automatically repaired. If you specify the -n (no)
option, only the problem is reported. No prompting occurs.

Index rebuilding can be time-consuming if you use tbcheck. Processing is
usually faster if you use the DROP INDEX and CREATE INDEX SQL statements
to drop the index and re-create it.

The -cl option performs the same checks as -ci but extends the consistency
checking to include the rowids associated with the key values. The same -ci
repair options are available with -cl.

tbcheck -cl -n storesb: custoner

-cr Option
The -cr option checks each of the root dbspace reserved pages as follows:
= It validates the contents of the SINFORMIXDIR/etc/$TBCONFIG file

with the PAGE_CONFIG reserved page.

= Itensures that all chunks can be opened, that chunks do not overlap,
and that chunk sizes are correct.

» Itchecks all logical and physical log pages for consistency.
If you have changed the value of a configuration parameter (either through
DB-Monitor or by editing the configuration file) and you have not yet reini-

tialized shared memory, tbcheck -cr detects the inconsistency and returns an
error message.

Refer to page 2-95 for a complete list of the root dbspace reserved pages. (The
-pr option performs the same checks and also displays the reserved-page
information as it checks the reserved pages.)

t bcheck -cr

-n Option

The -n option is used with the index repair options (-ci, -cl, -pk, -pK, -pl, and
-pL) to indicate that no repair should be performed, even if errors are
detected.

Utilities 7-41

Option Descriptions

7-42

-pB Option

The -pB option displays statistics that describe the average fullness of
blobspace blobpages in a specified table. These statistics provide a measure
of storage efficiency for individual blobs in a database or table. If a table is not
specified, statistics are displayed for the database. Refer to page 5-5 for more
details about interpreting thcheck -pB output.

t bcheck -pB stores5: catal og

-pc Option

The -pc option performs the same checks as the -cc option. In addition, -pc
displays the system catalog information as it checks it, including extent use
for each table. Refer to the -cc discussion on page 7-39.

t bcheck -pc

-pd and -pD Options

The -pd option can take a database, a table, and a specific rowid or logical
page number as input. In every case, -pd prints page header information and
displays the specified rows in hexadecimal and ASCII format. No checks for
consistency are performed. If you specify a rowid (expressed as a
hexadecimal value), the page number contained in the rowid is printed.
(Refer to page 2-123 for more details about the rowid.) If you specify a logical
page number (expressed as a decimal), the contents of that page are printed
if the page is a home page. If you specify a table, all the rows in the table are
printed, with their rowids. If you specify a database, all the rows in the
database are printed. Blob descriptors stored in the data row are printed but
blob data itself is not.

The -pD option prints the same information as -pd. In addition, -pD prints
blob values stored in the tblspace or blob header information for blobs stored
in a blobspace blobpage. For more details about how to use this output to
monitor disk pages, refer to page 3-77.

tbcheck -pd storesb:systables
tbcheck -pd stores5:systables 5
tbcheck -pD stores5: customer 0x101

IBM Informix OnLine Database Server Administrator's Guide

Option Descriptions

-pe Option

The -pe option performs the same checks as the -ce option. In addition, -pe
displays the chunk and tbispace extent information as it checks it. Refer to the
-ce discussion on page 7-40.

t bcheck -pe

-pk and -pK, -pl and -pL Options

The -pk option performs the same checks as the -ci option. In addition, -pk
displays the key values for all indexes on the specified table as it checks them.

The -pK option performs the same checks as the -cl option. The -pK option
displays the key values and rowids as it checks them. (Refer to the -ci and -cl
discussions on page 7-40.)

The -pl option performs the same checks as the -ci option and displays the
key values, but only leaf-node index pages are checked. The root and branch-
node pages are ignored. (Refer to page 2-133 for more details about index-
root, branch-node, and leaf-node pages.)

The -pL option performs the same checks as the -cl option and displays the
key values and rowids, but only for leaf-node index pages. The root and
branch-node pages are ignored.

Repair options are available with all four flags.

t bcheck -pK -n storesb. custoner

-pp and -pP options
The -pp option requires as input either of the following values:

= Atable name and a rowid (expressed as a hexadecimal value)
= Atblspace number and logical page number

Use the -pp option to dump the contents of the logical page number
contained in the rowid. The page contents appear in ASCII format. The
display also includes the number of slot-table entries on the page.

Utilities 7-43

Option Descriptions

7-44

Use the -pD option to obtain the rowid. Refer to page 2-104 for more details
about the thlspace number. Refer to page 2-124 for more details about the
logical page number. Refer to page 2-123 for more details about the rowid.
Refer to page 2-121 for more details about the slot table.

The -pP option provides the same information as the -pp option but requires
a chunk number and logical page number as input. For more details about
how to use this output to monitor disk pages, refer to page page 3-77.

tbcheck -pp stores5: customer 0x211
t bcheck 100000a 25
tbcheck -pP 3 15

-pr Option

The -pr option performs the same checks as the -cr option. In addition, -pr
displays the reserved-page information as it checks the reserved pages. Refer
to page 2-95 for a complete listing of the root dbspace reserved pages.

t bcheck -pr

If you have changed the value of a configuration parameter (either through
DB-Monitor or by editing the configuration file) and you have not yet reini-
tialized shared memory, tbcheck -cr detects the inconsistency, prints both
values, and displays an error message.

-pt and -pT Options

The -pt option prints a tblspace report for the specified table. The report
contains general allocation information including the maximum row size, the
number of keys, the number of extents and their sizes, pages allocated and
used per extent, the current serial value, and the date the table was created.
If a table is not specified, this information is displayed for all tables in the
database.

The -pT option prints the same information as the -pt option. In addition, the
-pT option displays index-specific information and page-allocation infor-
mation by page type (for dbspaces).

IBM Informix OnLine Database Server Administrator's Guide

thinit; Initialize OnLine

Output for both -pt and -pT contains listings for “Number of pages used”
and “Number of data pages.” The values provided are never decremented;
that is, they always represent the maximum value that is valid for the
tbispace. For an accurate count of the number of pages currently used, refer
to the detailed information on usage (organized by page type) that the -pT
option provides.

tbcheck -pT stores5: custoner

-¢ Option

The -q option suppresses all checking and validation messages. Only error
messages display if the -q option is invoked.

tbcheck -cc -q

-y Option

The -y option is used with the index-repair options (-ci, -cl, -pk, -pK, -pl, and
-pL) to indicate that tbcheck should repair any index where errors are
detected. OnLine must be in quiescent mode to repair indexes.

tbcheck -cl -y storesb: custoner

tbinit: Initialize OnLine

The tbinit process forks and the thinit daemon process that is spawned is the
process that supervises OnLine. The tbinit daemon process owns the OnLine
shared-memory segments and controls all other daemon processes
associated with OnLine. Executing tbinit from the command line initializes
OnLine. You must be logged in as root or user informix to execute tbinit.

Initialization commands are described in detail on page 2-8. For more details
about what happens during disk-space initialization and shared-memory
initialization, refer to page 2-14 and page 2-10, respectively.

Utilities 7-45

Syntax

Syntax
tbinit I
}p/ \S/J \y/
-i

-i specifies disk-space initialization. If you initialize disk space, all
existing data on the disk you are initializing is destroyed.

-p directs thinit not to search for and delete temporary tables
during shared-memory initialization.

-S directs thinit to leave OnLine in quiescent mode following
initialization. This option is equivalent to the DB-Monitor
Mode menu, Startup option.

-y automatically responds “yes” to all prompts.

No Options

If you execute tbinit without options, OnLine is left in online mode after
shared memory is initialized. For example, the following commands take
OnLine offline and then reinitialize shared memory:

t bnode - ky
tbinit

-i Option

If you use only the -i option, OnLine is left in online mode after initializing
disk space. If you use both the -i and -s options, OnLine is left in quiescent
mode. If you initialize disk space and overwrite an existing root dbspace, all data
associated with that OnLine system becomes inaccessible and lost.

7-46 1BM Informix OnLine Database Server Administrator's Guide

tbload: Create a Database or Table

-p Option

The -p option directs the tbinit daemon not to search for (and delete)
temporary tables left by database server processes that died without
performing cleanup. If you use this option, OnLine returns to online mode
more rapidly but space used by temporary tables left on disk is not reclaimed.

tbinit -p

-s Option

The -s option initializes shared memory and leaves OnLine in quiescent
mode. The following commands take OnLine offline, reinitialize shared
memory, and leave OnLine in quiescent mode:

t brode - ky
tbinit -s

tbload: Create a Database or Table

The tbload utility creates a database or table in a specified dbspace and loads
it with data from an input tape created by the tbunload utility. During the
load, you can move blobs stored in a blobspace to another blobspace.

The tape that tbload reads contains binary data stored in disk-page-sized
units. For this reason, the machine receiving the data and the machine used
to create the tape must share the same page size (specified as BUFFSIZE in the
configuration file).

When tbload is used to create databases from a tbunload input tape, the
databases that result are not ANSI-compliant and do not use transaction
logging until you take further action. You can make a database ANSI-
complaint after it is loaded through the DB-Monitor Logical-Logs menu,
Databases option. You can add logging to a database either through
DB-Monitor (same option) or by executing tbtape.

Before you load a table into an existing, logged database, end logging for the
database or load during off-peak hours. (Otherwise, you might fill the logical
logs or consume excessive shared-memory resources.) After the table is
loaded, create a level-0 archive before you resume database logging.

Utilities 7-47

Syntax

If you are loading a table that contains blobs stored in a blobspace, a prompt
asks you if you want to move the blobs to another blobspace. If you respond
“yes,” the next prompt displays the blobspace name where the blobs were
stored when the tape was created. You are asked to enter the name of the
blobspace where you want the blobs stored. If the name you enter is valid, all
blob columns in the table are moved to the new blobspace during the load.
Otherwise, you are prompted again for a valid blobspace name.

When a new database is loaded, the user who runs tbload becomes the
owner. Ownership within the database (tables, views, and indexes) remains
the same as when the database was unloaded to tape with tbunload.

To load a table, you must have Resource privilege on the database. When a
new table is loaded, the user who runs tbload becomes the owner unless you
specify an owner in the table name. (To do so requires DBA privilege for the
database.)

Synonyms or access privileges defined for a table at the time it was unloaded
to tape are not carried over to the new table. To obtain a listing of defined
synonyms or access privileges, use the dbschema utility. (Refer to page 7-32.)

During the load operation, the new database or table is locked exclusively.
Loading proceeds as a single transaction, and the new database or table is
dropped in case of error or system failure.

Syntax
tbload database
Specify jl Create j 1
Tape Options table name
Parameters p. 7-14
p. 7-49
database is the name of the database. The database name cannot include

a database server name because tbload does not support a
client/server environment.

table name is the name of the table. The table name cannot include a
database server name because tbload does not support a
client/server environment.

7-48 IBM Informix OnLine Database Server Administrator's Guide

Specify Tape Parameters

If you do not specify any tape parameter options, tbload uses the archive
tape parameters by default. The tape device to which data is sent is assumed
to be the device specified as TAPEDEV. The block size and tape size are
assumed to be the values specified as TAPEBLK and TAPESIZE, respectively.

To specify other parameter values, see the next section.

Specify Tape Parameters

Specify
Tape
Parameters
1 N

> /A | .
-b blocksize
-s tapesize
-t device

-b blocksize specifies in kilobytes the block size of the tape device.

-1 directs tbload to read the values for tape device, block size,
and tape size from the logical log backup device parameters
(LTAPEDEV, LTAPEBLK, and LTAPESIZE, respectively).

-s tapesize specifies in kilobytes the amount of data that can be stored on
the tape.

-t device names the pathname of the tape device where the input tape is
mounted.
You can use the -b, -s, and -t options individually to override the default

archive tape device parameters.

You can use the -b, -s, and -t options with the -l option to override individual
logical log device parameters.

To specify a remote tape device, use the following syntax:

host _machi ne_nane: t ape_devi ce_pat hnane

Utilities 7-49

Create Options

The host machine where the tape device is attached must permit user
informix to run a UNIX shell from your machine without requiring a
password. If your machine does not appear in the hosts.equiv file of the
other host machine, it must appear in the .rhosts file in the home directory of
the informix login. If you are executing tbload as root, the machine name
must appear in the .rhosts file for root on the other host machine.

Create Options

Create

Options
— < /A -d dbspace

L -i oldindex newindex

-d dbspace specifies the dbspace where the database or table is to be
stored.

-i oldindex directs tbload to rename the table index when it is stored.
newindex

If you do not use the -d dbspace option to specify a dbspace, the database or
table is stored in the root dbspace by default.

Use the -i option to rename indexes during the load to avoid conflict with
existing index names. A table name must be specified in the command line
for the -i option to take effect.

7-50 IBM Informix OnLine Database Server Administrator's Guide

tblog: Display Logical Log Contents

tblog: Display Logical Log Contents

The tblog utility displays the contents of an OnLine logical log file. The tblog
output is most useful in debugging situations, when you want to be able to
track a specific transaction or to see what changes have been made to a
specific tblspace.

Syntax
tblog I
1 Log-Record j 1 Log-Record j\ < /
Read Filters Display Filters
p. 7-52 p. 7-54
-q directs tblog to suppress the one-line header that appears

every 18 records by default.

You direct tblog to read the following portions of the logical log as it searches
for records to include in the output display:

= Records stored on disk

= Records stored on tape

= Records from the specified logical log file
You can display every logical log record header or you can specify output
based on the following criteria:

= Records associated with a specific table

= Records initiated by a specific user

= Records associated with a specific transaction
By default, tblog displays the logical log record header, which describes the

transaction number and the record type. The record type identifies the type
of operation performed.

Utilities 7-51

Log-Record Read Filters

In addition to the header, you can direct tblog to display the following
information:

= Copies of blobpages from blobspaces (copied from the logical log
backup tape only, not available from disk)

= Logical log record header and data (including copies of blobs stored
in a dbspace)

If tblog detects an error in the log file, such as an unrecognizable log type, it
displays the entire log page in hexadecimal format and terminates.

Log-Record Read Filters

Log-Record
Read Filters
— > < /A -n logid > -
& -d device J
-b
-b directs tblog to display blobspace blobpages stored on the logical log
backup tape.
-d device names the pathname of the tape device where the logical log
backup tape is mounted.
-n logid directs tblog to read only the logical log records contained in
the specified log.
-b Option

The -b option displays blobspace blobpages stored on the logical log backup
tape as part of blobspace logging. For more details about blobspace logging,
refer to page 4-22.

7-52 IBM Informix OnLine Database Server Administrator's Guide

Log-Record Read Filters

-d Option

If you do not use the -d option, tblog reads the logical log files stored on disk,
starting with the logical log file with the lowest logid number. The tblog
utility uses the pathnames stored in the root dbspace reserved pages to locate
the logical log files. If OnLine is in offline mode when you execute tblog, only
the files on disk are read. If OnLine is in quiescent or online mode, tblog also
reads the logical log records stored in the logical log buffers in shared
memory (after all records on disk have been read).

When you read the current logical log on disk, read and write access is denied
to all other user processes. For this reason, Informix recommends that you
wait to read the contents of the logical log files until after the files have been
backed up and then read the files from tape.

-n Option

If you do not use the -n option, tblog reads all logical log files available
(either on disk or on tape).

Utilities 7-53

Log-Record Display Filters

Log-Record Display Filters

Log-Record
Display Filters <

—>

/A)»

-t tblspace num
-u username

-X transaction num

-1 directs tblog to display the long listing of the logical log
record, both heading and associated data.

-ttblspace directs thlog to display only records associated with the

num specified tblspace. The tbspace number can be specified as
either a decimal or hexadecimal value. (If you do not use an 0x
prefix, the value is interpreted as a decimal.)

-u username directs tblog to display only records associated with activity
initiated by the specified user.

-x transaction directs tblog to display only records associated with the
num specified transaction. The transaction number must be a
decimal value. (Refer to tbstat -u.)

You can combine options with any other options to produce more selective
filters.

For example, if you use both -u and -x options, only the activities initiated by
username during the specified transaction are displayed.

If you use both the -u and -t options, only the activities initiated by username
and associated with the specified tblspace are displayed.

7-54 IBM Informix OnLine Database Server Administrator's Guide

Interpreting tblog Output

Interpreting tblog Output

The tblog utility displays the header of each logical log record. Depending on
the record type, additional columns of information also appear in the output.
Displayed below is a sample tblog output that illustrates the header columns
that display for every logical log record.

addr en type xid id link

93338 56 DELITEM 2 0 93318

93370 32 DELITEM 2 0 93338

93390 16 PERASE 2 0 93370

933a0 12 BEGCOM 2 0 93390

933ac 16 ERASE 2 0 933a0

933bc 20 CHFREE 2 0 933ac
This table defines the contents of each column.

Header Field Contents Format

addr Log record address Hexadecimal

len Record length Decimal

type Record type name ASCII

xid Transaction number Decimal

id Logical log number Decimal

link Link to the previous record in the Hexadecimal

transaction

Utilities 7-55

Interpreting tblog Output

Record Types

In addition to the six columns that display for every record, some record
types display additional columns of information. The information that is
displayed varies, depending on record type. A complete listing of record
types, alphabetized by type, is contained in the table on page